CARACTERIZACIÓN GENERAL DEL TERRITORIO

1. DIMENSIÓN AMBIENTAL

1.1 Medio Abiótico

 1.1.1 Geología

 1.1.1.1 Geología regional

 1.1.1.2 Estratigrafía

 1.1.1.3 Geología Estructural

 1.1.1.4 Unidades Geológicas Superficiales (UGS)

1.1.2 Geomorfología

 1.1.2.1 Geomorfología regional

 1.1.2.2 Unidades y subunidades geomorfológicas

 1.1.2.3 Pendientes

1.1.3 Suelos y uso de la tierra

 1.1.3.1 Unidades cartográficas

 1.1.3.2 Capacidad de uso (Clasificación agrológica)

 1.1.3.3 Vocación de uso

 1.1.3.4 Coberturas

 1.1.3.5 Conflictos de uso

1.1.4 Hidrografía e Hidrología

 1.1.4.1 Hidrología regional

 1.1.4.2 Caracterización de la red de drenaje

 1.1.4.3 Hidrología local

 1.1.4.4 Morfometría

 1.1.4.5 Régimen hidrológico

 1.1.4.6 Análisis de caudales

 1.1.4.7 Calidad del agua

 1.1.4.8 Usos del agua

 1.1.4.9 Sentencia del Río Bogotá

1.1.5 Hidrogeología

 1.1.5.1 Unidades Hidrogeológicas

 1.1.5.2 Zonas de recarga

1.1.6 Atmósfera

 1.1.6.1 Meteorología

 1.1.6.2 Fuentes de emisión

 1.1.6.3 Ruido

1.1.7 Cambio climático

 1.1.7.1 Etapa preliminar

 1.1.7.2 Valoración de impacto frente al cambio climático

TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>DIMENSIÓN AMBIENTAL</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARACTERIZACIÓN GENERAL DEL TERRITORIO</td>
<td>8</td>
</tr>
<tr>
<td>1. DIMENSIÓN AMBIENTAL</td>
<td></td>
</tr>
<tr>
<td>1.1 Medio Abiótico</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Geología</td>
<td></td>
</tr>
<tr>
<td>1.1.1.1 Geología regional</td>
<td>11</td>
</tr>
<tr>
<td>1.1.1.2 Estratigrafía</td>
<td>12</td>
</tr>
<tr>
<td>1.1.1.3 Geología Estructural</td>
<td>14</td>
</tr>
<tr>
<td>1.1.1.4 Unidades Geológicas Superficiales (UGS)</td>
<td>16</td>
</tr>
<tr>
<td>1.1.2 Geomorfología</td>
<td>20</td>
</tr>
<tr>
<td>1.1.2.1 Geomorfología regional</td>
<td>20</td>
</tr>
<tr>
<td>1.1.2.2 Unidades y subunidades geomorfológicas</td>
<td>20</td>
</tr>
<tr>
<td>1.1.2.3 Pendientes</td>
<td>25</td>
</tr>
<tr>
<td>1.1.3 Suelos y uso de la tierra</td>
<td>27</td>
</tr>
<tr>
<td>1.1.3.1 Unidades cartográficas</td>
<td>27</td>
</tr>
<tr>
<td>1.1.3.2 Capacidad de uso (Clasificación agrológica)</td>
<td>28</td>
</tr>
<tr>
<td>1.1.3.3 Vocación de uso</td>
<td>44</td>
</tr>
<tr>
<td>1.1.3.4 Coberturas</td>
<td>46</td>
</tr>
<tr>
<td>1.1.3.5 Conflictos de uso</td>
<td>54</td>
</tr>
<tr>
<td>1.1.4 Hidrografía e Hidrología</td>
<td>59</td>
</tr>
<tr>
<td>1.1.4.1 Hidrología regional</td>
<td>59</td>
</tr>
<tr>
<td>1.1.4.2 Caracterización de la red de drenaje</td>
<td>61</td>
</tr>
<tr>
<td>1.1.4.3 Hidrología local</td>
<td>61</td>
</tr>
<tr>
<td>1.1.4.4 Morfometría</td>
<td>75</td>
</tr>
<tr>
<td>1.1.4.5 Régimen hidrológico</td>
<td>76</td>
</tr>
<tr>
<td>1.1.4.6 Análisis de caudales</td>
<td>77</td>
</tr>
<tr>
<td>1.1.4.7 Calidad del agua</td>
<td>79</td>
</tr>
<tr>
<td>1.1.4.8 Usos del agua</td>
<td>82</td>
</tr>
<tr>
<td>1.1.4.9 Sentencia del Río Bogotá</td>
<td>83</td>
</tr>
<tr>
<td>1.1.5 Hidrogeología</td>
<td>89</td>
</tr>
<tr>
<td>1.1.5.1 Unidades Hidrogeológicas</td>
<td>90</td>
</tr>
<tr>
<td>1.1.5.2 Zonas de recarga</td>
<td>92</td>
</tr>
<tr>
<td>1.1.6 Atmósfera</td>
<td>92</td>
</tr>
<tr>
<td>1.1.6.1 Meteorología</td>
<td>92</td>
</tr>
<tr>
<td>1.1.6.2 Fuentes de emisión</td>
<td>95</td>
</tr>
<tr>
<td>1.1.6.3 Ruido</td>
<td>96</td>
</tr>
<tr>
<td>1.1.7 Cambio climático</td>
<td>101</td>
</tr>
<tr>
<td>1.1.7.1 Etapa preliminar</td>
<td>101</td>
</tr>
<tr>
<td>1.1.7.2 Valoración de impacto frente al cambio climático</td>
<td>103</td>
</tr>
</tbody>
</table>
1.1.7.3 Valoración de impacto frente a la variabilidad climática - Fenómenos El Niño, La Niña – Oscilación del Sur ... 109
1.1.7.4 Análisis de vulnerabilidad .. 111
1.1.7.5 Amenaza por cambio climático - Indicadores en Chía .. 113
1.1.7.6 Sensibilidad al cambio climático - Indicadores en Chía .. 114
1.1.7.7 Capacidad Adaptativa al cambio climático - Indicadores en Chía .. 115
1.1.7.8 Riesgo por cambio climático Chía ... 116
1.1.7.9 Estimación de emisiones de gases de efecto invernadero (GEI) .. 117
1.1.7.10 Identificación, selección y priorización de medidas ... 119
1.1.7.11 Contenido programático ... 120
1.1.8 Gestión del riesgo ... 121
1.1.8.1 Amenazas naturales en la zonificación POMCA río Bogotá ... 121
1.1.8.2 Proceso de conocimiento del riesgo de desastres ... 123
1.2 Medio Biótico .. 127
1.2.1 Ecosistemas .. 127
1.2.2 Flora .. 130
1.2.3 Fauna ... 131
1.2.4 Áreas de Especial Interés Ambiental (AEIA) ... 132
1.2.4.1 Áreas protegidas ... 132
1.2.4.2 Rondas declaradas .. 134
1.2.4.3 Áreas determinadas en el POMCA del río Bogotá .. 135

BIBLIOGRAFÍA .. 138
ÍNDICE DE TABLAS

Tabla 1. División territorial del Municipio de Chía .. 9
Tabla 2. Centros poblados rurales Municipio de Chía .. 10
Tabla 3. Unidades y Subunidades municipio de Chía ... 20
Tabla 4. Unidades cartográficas de suelo .. 27
Tabla 5. Datos de coberturas con metodología CORINE Land Cover 46
Tabla 6. Datos de conflictos de uso .. 59
Tabla 7. Características hidrográficas de las microcuencas ... 61
Tabla 8. Sistema hídrico municipal .. 62
Tabla 9. Verificación en campo Cuerpos líticos ... 70
Tabla 10. Parámetros morfométricos subcuencas sector Tibitoc - Soacha y Río Frío 76
Tabla 11. Estaciones hidrológicas ... 77
Tabla 12. Concentraciones máximas Clase IV ... 80
Tabla 13. Descriptores de Calidad del ICA ... 81
Tabla 14. Históricos Índice de calidad del agua (ICA) ... 81
Tabla 15. Inventario pozos de agua subterránea .. 90
Tabla 16. Estaciones climatológicas .. 92
Tabla 17. Niveles de ruido ambiental registrados ... 96
Tabla 18. Escenarios de cambio en la temperatura y precipitación 104
Tabla 19. Efectos del Niño y La Niña en la zona central de Cundinamarca 110
Tabla 20. Alteraciones más probables de la temperatura y precipitación en Chía por fenómenos típicos de El Niño y La Niña .. 110
Tabla 21. Efectos de la variabilidad climática ... 110
Tabla 22. Información requerida para el cálculo de la Huella de Carbono Territorial 118
Tabla 23. Principales diferencias entre adaptación y mitigación 120
Tabla 24. Régimen de usos ronda río Bogotá ... 134
Tabla 25. Régimen de usos ronda río Frío ... 134
Tabla 26. Zonificación POMCA para el municipio de Chía .. 136
Tabla 27. Descriptores de la categoría Conservación y Protección Ambiental para Chía 137
ÍNDICE DE FIGURAS

Figura 1. Localización del Municipio de Chía Cundinamarca .. 8
Figura 2. Veredas y centros poblados .. 9
Figura 3. Barrios en Zona urbana ... 10
Figura 4. Geología Regional .. 11
Figura 5. Geología Estructural – Fallas .. 15
Figura 6. Geología Estructural – Anticlinales y Sinclinales ... 16
Figura 7. Unidades Geológicas Superficiales .. 16
Figura 8. Unidades y subunidades geomorfológicas .. 21
Figura 9. Pendientes en porcentaje ... 25
Figura 10. Modelo Digital de Terreno ... 26
Figura 11. Pendientes en grados ... 26
Figura 12. Unidades cartográficas de suelo ... 28
Figura 13. Capacidad agrológica .. 29
Figura 14. Capacidad agrológica según POMCA .. 40
Figura 15. Vocación de uso .. 44
Figura 16. Coberturas - Territorios Artificializados .. 47
Figura 17. Coberturas - Territorios Agrícolas ... 49
Figura 18. Coberturas - Bosques y áreas seminaturales ... 52
Figura 19. Modelo lógico para definir los Conflictos de Uso del Territorio .. 55
Figura 20. Áreas de conservación y protección ambiental ... 55
Figura 21. Áreas para la producción agrícola y ganadera ... 56
Figura 22. Oferta ambiental ... 56
Figura 23. Demanda ambiental ... 57
Figura 24. Mapa de conflictos de uso ... 58
Figura 25. Hidrografía regional .. 59
Figura 26. Codificación de unidades hidrográficas – Microcuencas Chía ... 60
Figura 27. Microcuencas Chía .. 60
Figura 28. Red hídrica Chía ... 62
Figura 29. Quebrada Tiquiza – Quebrada Zanjón ... 64
Figura 30. Drenaje Casateja, Quebrada El Chirical y Quebrada Sindamanoy 64
Figura 31. Quebrada La Mana, Quebrada Santiamén y Quebrada El Rincón 65
Figura 32. Red hídrica costado suroriental del municipio ... 66
Figura 33. Chucunas del municipio .. 67
Figura 34. Cuerpos de agua delimitados en el POMCA Río Bogotá .. 68
Figura 35. Humedales identificados en Chía según Estudio 100 humedales 69
Figura 36. Humedal identificado en Chía según Estudio 150 humedales 69
Figura 37. Humedal Lagos de Chía .. 70
Figura 38. Subcuencas Chía ... 75
Figura 39. Puntos de monitoreo de la CAR en la Cuenca del Río Bogotá ... 80
Figura 40. Unidades hidrogeológicas ... 90
Figura 41. Zonas de recargas de acuíferos .. 92
Figura 42. Zonificación climática Caldas – Lang .. 95
Figura 43. Localización puntos de monitoreo ruido .. 96
Figura 44. Mapas de ruido ... 100
Figura 45. Temperatura de referencia 1976 – 2005 .. 105
Figura 46. Escenario Temperatura 2011 – 2040 .. 105
Figura 47. Escenario Temperatura 2041 – 2070 .. 106
Figura 48. Escenario Temperatura 2071 – 2100 .. 106
Figura 50. Escenario precipitación 2011 – 2040 .. 107
Figura 51. Escenario precipitación 2041 – 2070 .. 108
Figura 52. Escenario precipitación 2071 – 2100 .. 108
Figura 53. Definiciones análisis de vulnerabilidad..111
Figura 54. Definiciones dimensiones TCNCC ...112
Figura 55. Riesgo por cambio climático Chía ..116
Figura 56. Resultados globales Análisis vulnerabilidad y riesgo por cambio climático en Chía.117
Figura 57. Contenido programático del POMCA para Chía ...120
Figura 58. Pasos Zonificación del POMCA ...122
Figura 59. Zonas de amenaza alta POMCA río Bogotá ..122
Figura 60. Amenaza por inundación zona rural ..125
Figura 61. Amenaza por inundación zona urbana ..125
Figura 62. Amenaza por remoción en masa zona rural ..126
Figura 63. Amenaza por incendio zona rural ...127
Figura 64. Biomas municipio de Chía ...128
Figura 65. Tipos de ecosistemas generales Chía ...129
Figura 66. RFPP de la Cuenca Alta del Río Bogotá en Chía ..132
Figura 67. RNSC El Sauce ..133
Figura 68. Zonificación POMCA para el municipio de Chía ..135
Figura 69. Descriptores de la categoría Conservación y Protección Ambiental para Chía.....136
ÍNDICE DE GRÁFICAS

Gráfica 1. Caudales y niveles Estación Pte Cacique ... 77
Gráfica 2. Caudales y niveles Estación La Balsa .. 78
Gráfica 3. Usos del agua en el municipio .. 83
Gráfica 4. Precipitación Estación Almaviva .. 93
Gráfica 5. Precipitación Estación Guanata ... 93
Gráfica 6. Datos Estación Univ. Sabana .. 94
CARACTERIZACIÓN GENERAL DEL TERRITORIO

El municipio de Chía es uno de los 116 municipios del departamento de Cundinamarca, localizado al norte de la capital del país, ciudad con la que mantiene una estrecha relación en términos poblacionales de mercado de vivienda, laboral, de comercio y servicios, cultural y por supuesto de carácter ecológico.

Chía es un municipio de origen precolombino, por lo cual no se ha podido establecer con exactitud una fecha exacta de fundación. Lo cierto es que, a la llegada de los invasores españoles en abril de 1537, este valle ya se encontraba habitado por los muiscas, pertenecientes a la familia Chibcha, una de las más importantes del nuevo mundo, junto con los incas del Perú, los Aztecas y los Mayas de México y Centro América.

Según el texto “Chía nuestro compromiso con la historia”, de la entonces Alcaldía popular de Chía, los conquistadores encontraron en este territorio un pueblo organizado social, político y administrativamente y con profundas estructuras religiosas. Chía fue después de Sogamoso, la ciudad del Sol, el sitio espiritual más importante para el pueblo chibcha, aquí le brindaban tributo a sus Dioses; Chibchacum, Bachué, Bochica y Zuhé y a las fuerzas de la naturaleza como el agua, el sol, el aire y la tierra.

Limita por el Norte con Cajicá, según la Ordenanza 36 de 1954, por el Oriente con Sopó, según la Ordenanza 36 de 1954, por el Sur con el Distrito Capital Bogotá según la Ordenanza 36 de 1954 y con el municipio de Cota según Ordenanza 15 de 1941, por el Occidente con Tenjo y Tabio según la Ordenanza 36 de 1954. Los límites del municipio se extienden entre los cerros orientales y los cerros occidentales (La Valvanera) y atravesado por los ríos Bogotá y Río Frío, convirtiéndose estos a la vez en los elementos de conectividad ecológica más importantes.

Figura 1. Localización del Municipio de Chía Cundinamarca

Fuente: DIRSIE, Secretaría de Planeación – Municipio de Chía

El municipio está demarcado por dos unidades de paisaje claramente diferenciadas, ladera con 3.373 ha aproximadamente, equivalente al 42% del territorio municipal y la unidad de paisaje de Valle donde se desarrollan las principales actividades económicas y sociales con una extensión de 4664 ha, equivalente al 58%.
La cabecera urbana está localizada a los 4° 52´ latitud norte y 74° 04´ longitud oeste, altura sobre el nivel medio del mar de 2.550 metros, por otro lado, la cota máxima del municipio se registra en los 3.230 msnm.

Es un municipio de reducida extensión territorial, exactamente el número 22 en menor extensión, tan solo representa el 0.4% del total del territorio departamental, no obstante, lo anterior es el cuarto con mayor población, después de los municipios de Soacha, Facatativá y Fusagasugá el municipio está dividido en 8 veredas y 2 zonas urbanas, a saber:

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Área (ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona urbana (Cabecera)</td>
<td>581.66</td>
<td>7.24%</td>
</tr>
<tr>
<td>Zona Urbana (Mercedes de Calahorra)</td>
<td>40.51</td>
<td>0.50%</td>
</tr>
<tr>
<td>Vereda Cerca de Piedra</td>
<td>336.13</td>
<td>4.18%</td>
</tr>
<tr>
<td>Vereda Fonquetá</td>
<td>382.82</td>
<td>4.76%</td>
</tr>
<tr>
<td>Vereda Tíquiza</td>
<td>483.81</td>
<td>6.02%</td>
</tr>
<tr>
<td>Vereda Fagua</td>
<td>693.38</td>
<td>8.63%</td>
</tr>
<tr>
<td>Vereda Bojacá</td>
<td>799.57</td>
<td>9.95%</td>
</tr>
<tr>
<td>Vereda la Balsa</td>
<td>854.45</td>
<td>10.63%</td>
</tr>
<tr>
<td>Vereda Yerbabuena</td>
<td>2410.98</td>
<td>30.00%</td>
</tr>
<tr>
<td>Vereda Fusca</td>
<td>1453.55</td>
<td>18.09%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en cartografía oficial DIRSIE

Si bien no hay información de un plano oficial, conforme a la información levantada por la Dirección de Sistemas de información y Estadística, en la zona rural se reconocen por lo menos 135 sectores y en la zona urbana, 27 barrios.

Por las estrechas relaciones con Bogotá y el predominio de la actividad residencial, el municipio se destaca por tener dos sectores urbanos claramente demarcados, la cabecera urbana principal con un área de 5,9 km\(^2\) y un barrio de origen informal hacia el norte del municipio en límites con Cajicá que ha evolucionado de forma progresiva a un trazado y forma urbana más regular, conocido como Mercedes de Calahorra, con un área aproximada de 0.4 km\(^2\).

Conforme al plan de ordenamiento territorial vigente, Acuerdo 17 de 2000 y acorde con la realidad de urbanización del municipio, fueron identificados 12 centros poblados (Tabla 2):

Figura 2. Veredas y centros poblados

Fuente: Elaboración Propia con base en cartografía oficial POT Acuerdo 17 de 2000
Tabla 2. Centros poblados rurales Municipio de Chía

<table>
<thead>
<tr>
<th>Centro poblado</th>
<th>Área ha</th>
<th>Vereda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centro poblado El Darién</td>
<td>3.28</td>
<td>Bojacá</td>
</tr>
<tr>
<td>Centro poblado Chiquiñada</td>
<td>5.36</td>
<td>Fagua</td>
</tr>
<tr>
<td>Centro poblado Cuatro esquinas</td>
<td>29.41</td>
<td>Tíquiza</td>
</tr>
<tr>
<td>Centro poblado El espejo</td>
<td>4.59</td>
<td>Fonquetá</td>
</tr>
<tr>
<td>Centro poblado La Paz</td>
<td>8.53</td>
<td></td>
</tr>
<tr>
<td>Centro poblado Pueblo Fuerte</td>
<td>4.41</td>
<td>Cerca de Piedra</td>
</tr>
<tr>
<td>Centro poblado Puente Cacique</td>
<td>13.98</td>
<td>Cerca de Piedra y Fonquetá</td>
</tr>
<tr>
<td>Centro poblado Rincón de Fagua</td>
<td>2.76</td>
<td>Fagua</td>
</tr>
<tr>
<td>Centro poblado Rincón Santo</td>
<td>1.80</td>
<td>La Balsa</td>
</tr>
<tr>
<td>Centro Poblado Sabaneta</td>
<td>8.02</td>
<td>La Balsa</td>
</tr>
<tr>
<td>Centro poblado Santa Bárbara</td>
<td>2.04</td>
<td>Cerca de Piedra</td>
</tr>
<tr>
<td>Centro poblado Villa Juliana</td>
<td>1.41</td>
<td>Tíquiza</td>
</tr>
<tr>
<td>Total</td>
<td>85.59</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia con base en cartografía oficial POT Acuerdo 17 de 2000

En lo que referente al perímetro urbano, este se encuentra distribuido en un total de 27 barrios, tal como se muestra en la Figura 3.

Figura 3. Barrios en Zona urbana

Adicional a la anterior sectorización, en el municipio de Chía ha sido reconocido históricamente por las comunidades el resguardo indígena, pero tuvo reconocimiento oficial por parte del Estado en el año 2013 mediante el Acuerdo No 315 de la Junta Directiva del entonces Incoder. Conforme al Censo nacional de población y vivienda cuenta con un total de 449 hogares y con una extensión de 196,98 Ha, que representa el 2,5% del total municipal.
1. DIMENSIÓN AMBIENTAL

1.1 Medio Abiótico

1.1.1 Geología

1.1.1.1 Geología regional

Geológicamente el municipio, se ubica en la plancha 228 (Bogotá Noreste), la cual incluye la zona centro oriente del departamento de Cundinamarca (Servicio Geológico Colombiano, 2015).

A nivel regional se presentan rocas con edades que van desde el Cretácico inferior hasta el terciario superior, que en general, corresponden a sucesiones de areniscas y arcillolitas, cubiertas parcialmente por depósitos cuaternarios de origen fluvio-glacial, coluvial y aluvial (Medio Natural S.A.S., 2018).

Estas rocas están denominadas formalmente en los diferentes informes del Servicio Geológico Colombiano (SGC antes INGEOMINAS) en unidades geológicas que en orden cronológico desde las más antiguas son: los diferentes niveles del Grupo Guadalupe (Formación Arenisca Dura, formación Plaeners, formación Labor-Tierna), Formación Guaduas y las formaciones cuaternarias definidas formalmente son: Formación Sabana y Formación Chía (Figura 4).

A nivel tectónico regional destacan las fallas de Bogotá, Teusacá y Chocontá-Pericos, todas son fallas subparalelas de tipo inverso. Adicionalmente se tienen numerosas estructuras de pliegues anticlinales y sinclinales.

Figura 4. Geología Regional

Fuente: Consorcio Huitaca (2017)
1.1.1.2 Estratigrafía

De acuerdo con la plancha 228 y con el documento de la fase de diagnóstico del Ajuste del Plan de Ordenación y Manejo de la cuenca del Río Bogotá (Consorcio Huitaca, 2017), en el municipio se presentan las siguientes formaciones:

1.1.1.2.1 Formación Arenisca Dura (K2d)

Esta unidad referenciada originalmente por Hubach en 1931 y Renzoni en 1962, se presenta conformando algunos de los cerros que bordean la Sabana de Bogotá, tanto al oriente como al occidente y al sur. Los mejores afloramientos se observan en los flancos y núcleos de algunos pliegues anticlinales, entre los que se tienen los siguientes sectores: costados oriental, suroriental y occidental de la Sabana.

Está constituida por areniscas cuarzosas, gris claras, de grano fino, en estratificación delgada a muy gruesa, lenticulares a plano paralelas, con intercalaciones esporádicas de arcilloлитas y limolitas. Presenta un espesor variable, el cual oscila entre 308 y 460 m para el sector de los cerros surorientales y suroccidentales de la Sabana de Bogotá y entre 185 y 350 m para el área occidental de la sabana (Caro & García, 1988; Pérez & Salazar, 1973; Martínez, 1990, citados por Consorcio Huitaca, 2017). Esta unidad se depositó en un ambiente litoral a sublitoral (Pérez & Salazar, 1973 citados por Consorcio Huitaca, 2017) y su edad es Campaniano - Santoniano.

El contacto inferior de la Formación Arenisca Dura es concordante; mientras que el superior es suprayacente en su mayor parte por la Formación Plaeners en contacto neto y concordante.

1.1.1.2.2 Formación Guaduas (K2E1g)

Referenciada por Hettner en 1892, para agrupar sedimentos depositados en un ambiente marino (parte inferior), y en un ambiente transicional y aluvial (parte media y superior). Su edad se considera Maastrichtiano tardío - Paleoceno temprano (Sarmiento, 1995, y Martínez, 1990 citados por Consorcio Huitaca, 2017). El espesor total de la unidad es de 1.000 m para la región Oriental y suroccidental de Bogotá, y entre 700 y 1080 m para la región occidental y noroccidental de la sabana (Martínez, 1990 citado por Consorcio Huitaca, 2017). En la cuenca del río Bogotá aflora en gran parte de la cuenca alta y media, en las zonas de piedemonte y en los cerros que bordean la Sabana de Bogotá, en las planchas 209, 228, 246 y 227.

Litológicamente consta de tres conjuntos litológicos: a) el inferior, conformado por arcilloлитas y areniscas de grano fino y mantos de carbón; b) el conjunto intermedio, constituido por areniscas cuarzosas, de color gris claro, de grano fino a grueso, con intercalaciones menores de arcilloлитas y mantos de carbón de poco espesor, y c) el superior, constituido por arcilloлитas de color gris oscuro, con intercalaciones menores de areniscas cuarzosas, de grano medio a grueso y mantos de carbón.

1.1.1.2.3 Formación Plaeners (K2p)

Unidad referenciada por Hubach en 1957, la cual había sido descrita en 1931, y redefinida por Renzoni (1962, 1968). Aflora en los flancos de algunos de los cerros que bordean la Sabana de Bogotá, y hacen parte de las estructuras anticlinales.

Litológicamente está constituida: en la parte inferior, por paquetes de areniscas de grano fino, arcilloлитitas y limolitas silíceas, y liditas; la parte media, por una alternancia de limolitas, arcilloлитitas y areniscas de grano fino, y la parte superior, por limolitas y liditas. El espesor de la unidad es variable y oscila entre 156 y 212 m para la parte nororiental y suroccidental de Bogotá, y entre 60 y 300 m para la región occidental y noroccidental de la sabana. Su depósito ocurrió en un
ambiente marino, de llanuras de lodo, durante el Maastrichtiano temprano (Pérez & Salazar, 1973 citados por Consorcio Huitaca, 2017).

El contacto inferior concordante con la Formación Arenisca Dura, se trazó en la base de la capa más baja de limonitas silíceas, la cual suprayace a una espesa secuencia de arenitas; el contacto superior, se ubicó en el techo de la capa más alta de limolitas silíceas, la cual infrayace una secuencia espesa de arenitas de cuarzo de la Formación Labor y Tierna.

1.1.1.2.4 Formación Labor y Tierna (K2t)

Esta unidad fue definida por Renzoni en 1968. Al igual que las dos unidades anteriores y como unidad superior del Grupo Guadalupe, constituye la mayor parte de los cerros que bordean La Sabana de Bogotá.

Litológicamente consta de tres conjuntos: a) uno inferior conformado por areniscas cuarzozas, de color gris claro, de poco espesor, de grano fino a medio, ligeramente friables; b) un conjunto intermedio donde predominan arcillolitas y limolitas silíceas, y c) el conjunto superior constituido por areniscas cuarzozas, gris claro, de grano medio a grueso, con estratificación cruzada, moderadamente friables, y en estratos de 0,2 a 3,0 m de espesor.

El espesor total de la unidad es variable, así: para la región Suroriental de la Sabana de Bogotá oscila entre 235 y 290 m, mientras que para la región Occidental y Noroccidental oscila entre 166 y 300 m. Se considera que se depositó en un ambiente litoral durante el Maastrichtiano temprano a medio.

El contacto inferior es concordante y se ubicó en la base de la capa más baja de arenitas de cuarzo, la cual suprayace una secuencia de limolitas silíceas; el contacto superior igualmente concordante, y se localizó en el techo de la capa más alta de arenitas, que infrayace una secuencia de arcillolitas de la Formación Guaduas.

1.1.1.2.5 Formación Sabana (Q1sa)

Unidad referenciada inicialmente por Hubach (1957). Se encuentra básicamente en el propio altiplano y cubre la parte más o menos plana de la Sabana de Bogotá, suprayaciendo a la Formación Subachoque y otras unidades.

Comprende sedimentos lacustres, constituidos principalmente por arcillas. Hacia los márgenes de la cuenca del río Bogotá existe un incremento en las intercalaciones de arcilla orgánica, turba, arcillas arenosas, arenas arcillosas y en sectores puntuales gravas, gravillas y arenas. En el centro de la cuenca representa aproximadamente 300 m de espesor, disminuyendo hacia los bordes. La edad es inferior a 1 millón de años, perteneciendo al Pleistoceno Medio a Tardío.

Los datos palinológicos indican que fue depositada en un lago (ambiente lacustre) con fluctuaciones del nivel de agua, mostrando una relación estrecha con los cambios de las condiciones climáticas y de vegetación. La deposición cesó hace cerca de 30.000 (A.P.) años con la desaparición del lago de la Sabana. Los contactos, tanto inferior como superior de la Formación Sabana son discordantes.

1.1.1.2.6 Formación Chía (Q2ch)

Corresponde a sedimentos fluviales de inundación, y de los cauces actuales, localizados a lo largo de los ríos principales que cruzan la Sabana de Bogotá, algo por debajo de la planicie general. Los sedimentos de la Formación Chía se pueden interpretar como arcillas de inundación, de una edad Pleistoceno Tardío a Holoceno.
Litológicamente está constituida principalmente por arcillas de color gris claro, oscuro y amarillo; localmente puede contener limos y arcillas orgánicas. Su espesor máximo puede alcanzar los 5 m.

1.1.1.3 Geología Estructural

Según Consorcio Huitaca (2017), la cuenca del río Bogotá se encuentra localizada en el segmento central de la Cordillera Oriental, conformando parte de su zona axial y su flanco occidental. Por el oriente limita con el borde oriental de la cordillera y por el occidente con el valle del Magdalena. En esta región se presenta una alta complejidad estructural, como resultado de la interacción de diferentes episodios de actividad tectónica, entre las que se destacan: un periodo de extensión durante el Cretácico temprano y posteriormente, un periodo compresivo durante la Orogenia Andina desarrollada a partir del Mioceno Medio, originando el levantamiento de la Cordillera Oriental.

1.1.1.3.1 Fallas

A nivel tectónico regional destaca el sistema de fallas de la cordillera oriental, dentro del cual se encuentran las fallas de Bogotá, Teusacá, Chocontá – Pericos, y otros sistemas de fallas que no se encuentran nombradas en la literatura (Figura 5), las cuales ponen en contacto rocas cretáceas y cenozoicas en algunos puntos (Medio Natural S.A.S., 2018).

- Falla El Porvenir

Localizada al occidente del Anticlinal de Zipaquirá, presenta una estructura monoclinal asociada a la Serranía de Chía – Cota. Es una falla inversa con vergencia hacia el occidente, que en la zona de estudio está cubierta por depósitos cuaternarios lacustres, pero que de acuerdo con Montoya y Reyes (2005) es la responsable del levantamiento de la sierra homoclinal de Chía – Cota, colocando la Formación Conejo a nivel de los depósitos cuaternarios (IGAC, 2012).

- Falla Chocontá – Pericos

Esta falla, definida por Montoya y Reyes (2003) como falla de Chocontá y propuesta como falla de Pericos por McLaughlin (1975) se extiende desde el sur de La Calera, bordeando el flanco oriental del Anticlinal de Sopó – Sesquilé hasta el municipio de Villapinzón. Es una falla inversa, con vergencia hacia el Oriente y con un trazo principal sinuoso por cambios de dirección debido a la presencia de bloques tectonizados y probablemente rotados. La máxima deformación de esta falla se presenta en los alrededores de La Calera, donde interactúa con la Falla de Teusacá, configurando un posible retrocabalgamiento de la Falla Pericos (IGAC, 2012).

- Falla Teusacá

La falla Teusacá se extiende bordeando el flanco oriental del Sinclinal de Suesca -Teusacá, desde el sector de El Salitre, hasta cercanías del municipio de Sopó; es probable que se proyecte hacia el norte por debajo de los depósitos cuaternarios. El trazo principal de esta falla es inverso con algún componente de cabalgamiento, en el cual las unidades de Arenisca Dura, Plaeners y Labor-Tierra se encuentran sobre la Formación Guaduas. En los alrededores de La Calera se identifica una posible transferencia de la deformación, influenciada por la Falla de Pericos y caracterizada por cambios rápidos de rumbo y retrocabalgamiento (IGAC, 2012).

- Falla de Bogotá

Esta falla bordea los Cerros Orientales de Bogotá, extendiéndose desde el Páramo de Sumapaz, en el sur, hasta el norte de la zona urbana de la ciudad de Bogotá, formando el límite occidental del Anticlinal de Bogotá, y posiblemente continúa hacia el norte fosilizada por depósitos

Adicional a las fallas mencionadas, en la parte occidental del municipio se presenta una falla inversa o de cabalgamiento definida y una falla de rumbo sinextral, sin nombre en la literatura.

Figura 5. Geología Estructural – Fallas

Fuente: Consorcio Huitaca (2017)

1.1.1.3.2 Estructuras Anticlinales

- **Anticlinal de Bogotá**

Esta denominación ha sido discutida ampliamente para designar a la estructura de este tipo situada en los cerros orientales de Bogotá, y que se une al denominado Anticlinal de Usaquén (McLaughlin, 1975), configurando una estructura anticlinal segmentada que está relacionada regionalmente con los cerros aislados localizados en la zona de Tibitó, así como con el Anticlinal de Nemocón, ubicado hacia el norte. El núcleo de esta estructura está formado por rocas de las formaciones Arenisca Dura, Plaeners y Labor Tierna y su eje presenta dirección N10°E en el sector entre Bogotá y el área de Tibitó. Su flanco occidental está afectado por la Falla de Bogotá y el flanco oriental está afectado por la Falla de Chocontá – Pericos (IGAC, 2012).

En las veredas de Fusca y Yerbabuena se presenta un anticlinal sin nombre en la literatura (**Figura 6**).

1.1.1.3.3 Estructuras Sinclinales

De acuerdo con IGAC (2012), los sinclinales de la Sabana de Bogotá se caracterizan por ser amplios y por estar rellenados con depósitos lacustres antiguos y recientes. La gran mayoría de estos sinclinales tienen rumbo NE, aunque en algunos casos el rumbo regional suele ser afectado por las fallas que los separan de los anticlinales.

En el municipio de Chía en las veredas Fusca y Yerbabuena, se encuentra un sinclinal con cabeceo que no cuenta con nombre en la literatura (**Figura 6**).
1.1.1.4 Unidades Geológicas Superficiales (UGS)

La clasificación de las UGS para el municipio se hizo según lo establecido en el Documento Diagnóstico de la actualización del POMCA del río Bogotá (Consorcio Huitaca, 2017)

Los materiales geológicos aflorantes en el área de estudio, para su cartografía y caracterización con propósitos ingenieriles y geotécnicos, se clasificaron en: unidades de roca (macizo rocoso de variada composición litológica y de diferentes edades), y unidades de suelos (suelos residuales y depósitos inconsolidados del Cuaternario) (Figura 7).

Figura 6. Geología Estructural – Anticlinales y Sinclinales

Figura 7. Unidades Geológicas Superficiales

Fuente: Consorcio Huitaca (2017)
1.1.1.4.1 Rocas de Resistencia Intermedia (Ri)

- **Roca Intermedia Formación Labor y Tierna (Rilt)**

Constituidas por secuencia de areniscas cuarzosas y feldespáticas, grises claras a blancas y pardo amarillentas a rojizas por meteorización, de grano fino a grueso y ocasionalmente muy grueso a conglomerático, moderadamente cementadas, en general fríables, de resistencia moderada a dura, en estratificación muy gruesa a delgada, ocasionalmente cruzada lenticular, poco fracturadas; con intercalaciones menores de limolitas, arcillolitas silíceas y lodolitas; las rocas se presentan en general moderadamente meteorizadas, con sectores localizados altamente meteorizadas, las cuales originan suelos residuales de espesor importante; con un Jv en general bajo a medio (10-30 Fr/m³); con un índice geológico de resistencia en general bueno (G.S.I: – 50% – 70)

Presentan una morfología muy variada, desde laderas con pendientes suaves hasta abruptas y escarpadas. Conforman la mayor parte de los cerros que bordean las cuencas media y alta sabana.

Desde el punto de vista económico, es la principal unidad productora de arena de peña, para construcción y enchape, en la fabricación de vidrio y de concreto. Por su alta porosidad primaria y secundaria y posición estructural dentro de la secuencia estratigráfica, se constituye en un acuífero muy importante dentro de las cuencas media y alta del río Bogotá.

- **Roca Intermedia Formación Plaeners (Rip)**

Están constituidas por una secuencia interestraficada de limolitas y arcillolitas comúnmente silíceas y liditas, de colores blanco, gris claro, verdoso y oscuro y amarillo–naranja por meteorización, de resistencia moderadamente dura a dura, en estratificación muy delgada a delgada, en general muy fracturadas; con intercalaciones de areniscas gris claras, grano fino a medio, compactas, en estratificación delgada; las rocas se presentan en general, débilmente meteorizadas a moderadamente meteorizadas, con sectores puntuales altamente meteorizadas, conformando suelo residual; con un Jv de medio a alto (de 10 a 30 Fr/m³); con un índice geológico de resistencia bueno (G.S.I : 50% – 60 %) y en sectores puntuales con un índice medio (35% – 45%)

Por las características de las discontinuidades el macizo rocoso se considera de calidad regular a buena. Conforman un relieve variado desde moderado hasta abrupto; se presentan en los flancos de algunos cerros conformantes de la cuenca baja y algunos que bordean las cuencas media y alta, y hacen parte de algunas estructuras anticlinales; afloran como fajas estrechas.

Desde el punto de vista económico se constituye en una fuente importante de materiales de construcción, especialmente como recebos en afirmado y sub – bases en la construcción de vías.

1.1.1.4.2 Rocas Blandas (Rb)

- **Roca Blanda Formación Guaduas (Rbg)**

Este grupo de rocas está compuesto por una secuencia predominante de arcillolitas de colores gris claro y oscuro, abigarrado, amarillo a naranja y rojizo por meteorización, de consistencia blanda, en estratificación delgada a muy gruesa; presenta intercalaciones de paquetes y/o conjuntos importantes de areniscas cuarzosas y feldespáticas, gris claras y amarillas por meteorización, de grano fino a grueso, ocasionalmente conglomeráticas, duras, compactas, en estratificación delgada a muy gruesa, y limolitas gris oscuras, en estratificación delgada y mantos importantes de carbón. Estas rocas se presentan en general moderadamente meteorizadas, con
sectores altamente meteorizados, conformando suelos residuales de extensión y espesor importantes; en general se presentan poco fracturadas.

Las rocas de estas unidades presentan para los niveles arenosos un índice geológico de resistencia bueno a regular (G S I: 40 – 60%); mientras que para los niveles arcillosos presentan un índice geológico de resistencia de regular a pobre (GSI: 30-45%) y un Jv > 30 Fr/m³

1.1.1.4.3 Rocas de Resistencia Dura (Rd)

- Roca Dura de la Formación Arenisca Dura (Rdd)

Está integrada por la Formación Arenisca Dura (K2d) del Grupo Guadalupe. Están constituidas predominantemente por areniscas, grises claras a blancas y amarillo por meteorización, de composición cuarzosa, grano muy fino a fino, compacto, en general bien cementado, con una textura clástica cementada, en estratificación gruesa a muy gruesa, con esporádicas y muy delgadas intercalaciones de limolitas y arcillolitas silíceas; en general poco meteorizadas y poco fracturadas. Presentan un JV muy bajo (< 4,5 Fr/m³) y un índice geológico de resistencia muy bueno (GSI = 70 – 80 %) y poco meteorizadas

1.1.1.4.4 Suelos Residuales (Sr)

- Suelos arenosos.

Corresponden a la clase granular, cuya roca parental son predominantemente areniscas cuarzosas y cuarzo – feldespáticas, pertenecientes a las formaciones Labor Tierna(Srft), Cacho (Srt), Regadera (Srr) y Arenisca Dura (Srdd); se presentan en afloramientos de estas formaciones; de colores amarillo y naranja rojizo, de textura arenosa gruesa a media, de consistencia alta, de densidad relativa densa, en general secos y ocasionalmente húmedos, con estructuras relictas, ocasionalmente fisuras y grietas.

Presentan un recubrimiento de suelo orgánico de color gris oscuro de espesor variable entre 20 cm y 1,5 m. El espesor de los suelos arenosos oscila entre los 3 y 10 m medidos hasta la roca moderadamente meteorizada.

Tienen una morfología en general ondulada, con laderas de pendientes topográficas desde muy suaves hasta muy abruptas 60%, en general laderas estructurales y plegamientos anticlinales y sinclinales, y se localizan en los terrenos de composición arenosa, y especialmente sobre las divisorias de aguas de las zonas montañosas.

1.1.1.4.5 Suelos transportados (St)

- Suelo Transportados Aluviales (Stf)

Corresponden a los sedimentos fluviales de cauces actuales y llanuras de inundación de los drenajes principales que atraviesan la Cuenca del Río Bogotá, como son los ríos: Bogotá, Sisga, Teusacá, Chocua, Neusa, Siecha, Frío, Subachoque, La Pava, Bojacá, Serrezuela, Balsillas, Muña, Agua Claras, Tunjuelito, Chusacá, San Cristóbal, San Francisco, Juan Amarillo, y afluentes principales de estos. En general presentan una morfología plana a ligeramente inclinada. Se caracterizan por tener materiales no consolidados, arenoso limoso con gravas, cantos y bloques. Las arenas son de granulometría variable y densidad baja.
Materiales correspondientes a las cuencas media y alta, conformados por materiales de granulometría fina a media gruesa: arcillas, limos, arenas finas, gravas, gravillas y ocasionalmente bloques redondeados; los materiales de granulometría media y gruesa se presentan hacia el techo de la secuencia y especialmente en los sectores de confluencia de los afluentes principales del río Bogotá, poco consolidados, densidad baja y deleznables, con un índice. El espesor de los depósitos fluviales es de aproximadamente 5 m, (Van der Hammen y González (1963, 1965).

Los depósitos fluvio lacustres presentan un espesor aproximado de 300 m, en el centro de la cuenca y disminuye hacia los bordes (Van der Hammen, 1995). Desde el punto de vista económico se utiliza como material de construcción en la producción de gravas, gravillas y arenas.

Suelo Transportado Fluvio Lacustre de la Formación Sabana (Stflsa)

Presentan una morfología en general plana a ligeramente inclinada y corresponden a los materiales formados por la sedimentación de un antiguo lago que cubrió los terrenos de la parte central de la denominada Sabana de Bogotá. Están constituidos principalmente por arcillas y limos; de color gris, amarillo pálido y naranja por meteorización, de consistencia blanda. Hacia los márgenes de la cuenca se presenta un incremento de intercalaciones lenticulares de arcillas orgánicas, turba, arcillas arenosas, arenas arcillosas, y en las áreas de confluencia, de los ríos principales (Tunjuelito, Subachoque, Frío, Fucha, y San Cristóbal), se presentan materiales de granulometría fina – media, representados por gravas, gravillas y arenas, poco consolidados, densidad media a baja y localmente se presentan algunas fisuras.

Suelo Transportado Coluvial (Strc)

Corresponden a los materiales depositados o acumulados en sitios puntuales y aislados, principalmente en la base de las laderas montañosas, colinas, lomas y escarpes rocosos que rodean la cuenca del río Bogotá. Son el resultado principalmente de la acción de los fenómenos de remoción en masa en los cuales ha habido translocación de detritos por acción gravitacional e hidrogravitacional, tales como: flujos terrosos, deslizamientos, derrumbes, desprendimientos, etc. Igualmente comprende las acumulaciones de materiales de texturas finas y homogéneas, procedentes de la resultante de fenómenos de erosión fluvial y reptación de suelos. Dependiendo del mecanismo de formación. Los depósitos coluviales presentan características variadas así: los materiales coluviales procedentes de deslizamientos, derrumbes, flujos terrosos, desprendimientos, etc., presentan, una composición litológica relacionada con las rocas de las laderas superiores adyacentes, de donde proceden sus materiales, distribución irregular, en forma caótica, con material de suelo y fragmentos de roca, angulares a subangulares, cuyo tamaño varía desde gravillas hasta bloques de gran tamaño, dentro de una matriz de arena y limos.
1.1.2 Geomorfología

1.1.2.1 Geomorfología regional

La geomorfología de la Sabana de Bogotá va enmarcada dentro del contexto geoestructural de la formación de la Cordillera Oriental, caracterizada por el plegamiento de capas sedimentarias, y la conformación de estructuras y depresiones tectónicas hacia el Cretácico. La conformación de la depresión tectónica donde se encuentra ubicada la Sabana de Bogotá, y en términos generales, la región del Altiplano Cundiboyacense se obtuvo por la formación de una cuenca distensiva a partir de esfuerzos compresionales y fallamiento, acompañado de algunas intrusiones diapíricas (Carvajal, 2005 citado por IGAC, 2012).

La cuenca del río Bogotá se encuentra ubicada geomorfológicamente en la morfogeoestructura correspondiente al Sistema montañoso orogénico Andino que bordea el cratón Guayanés por su parte noroccidental.

El sistema orogénico Andino está conformado en la cuenca del río Bogotá, a su vez, por la provincia geomorfológica de la cordillera oriental, la cual se formó principalmente en el Terciario medio, sufriendo a su vez de una evolución tectónica consistente en levantamientos en bloques acompañados de algunas intrusiones en el Terciario tardío y Holoceno.

La provincia geomorfológica de la Cordillera Oriental tiene su propia historia asociada con eventos de acumulación de sedimentos en cuencas inicialmente distensivas y subsidentes, afectadas luego por eventos compresivos que invirtieron el movimiento de las fallas ancestrales.

El proceso en general ocasionó el levantamiento de la cordillera, la generación de pliegues anticlinales en dirección noreste, apretados y localmente tumbados en asocio de fallas inversas longitudinales y fallas de desgarre y rumbo en dirección noroeste – sureste que definen a lo largo de las estructuras mayores anticlinales y sierras homoclinales con diferentes grados de plegamiento.

Al nivel de regiones, definidas éstas por los ambientes morfogenéticos, la cuenca del río Bogotá está enmarcada por una serie de serranías morfoestructurales que hacen parte de las vertientes tanto occidental como oriental de la Cordillera Oriental, afectadas localmente tanto por procesos denudativos pluviales y glaciares. Hacia la parte central (cuenca media-alta) se presenta la región geomorfológica del altiplano lagunar cundiboyacense, disectado por planicies aluviales actuales y recientes pertenecientes a los ríos Bogotá, Subachoque, Balsillas y Teusacá, principalmente (Consorcio Huitaca, 2017).

1.1.2.2 Unidades y subunidades geomorfológicas

Para el municipio de Chía la clasificación de las unidades y subunidades de los ambientes morfogenéticos se realizó en las categorías establecidas en la metodología utilizada en el documento de diagnóstico del Actualización del POMCA Río Bogotá (Consorcio Huitaca, 2017), como se observa en la Tabla 3 y Figura 8.

<table>
<thead>
<tr>
<th>Origen</th>
<th>Unidad geomorfológica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antrópico</td>
<td>Acl Promotorios de desecho de cantera</td>
</tr>
<tr>
<td></td>
<td>Acn Canteras</td>
</tr>
<tr>
<td></td>
<td>Azupi Planicie o llanura de inundación en zonas urbanas</td>
</tr>
<tr>
<td></td>
<td>Azupia Zona urbana en altiplanicie</td>
</tr>
<tr>
<td>Denudativo</td>
<td>Dcddta Cono de deslizamiento traslacional antiguo</td>
</tr>
<tr>
<td></td>
<td>Dcdtr Cono de deslizamiento traslacional reciente</td>
</tr>
<tr>
<td></td>
<td>Dcdy Cono de deyección</td>
</tr>
</tbody>
</table>
1.1.2.2.1 Unidades y Subunidades de origen antrópico

- Promontorios de desecho de cantera (Acl)

Acumulaciones alomadas de 3 – 10 m de altura, formadas por la acumulación de materiales extraídos de una cantera por lo general bloques, arenas y gravas. Estas geoformas de poca extensión se presentan localmente como una serie de montículos de baja altura y constituidos tanto por materiales procesados y listos para su distribución como por materiales de desecho producto del descapote de las canteras.
Canteras (Acn)

Excavación escarpada de 5 – 20 de altura de formas irregulares o en terrazas hechas en laderas para la extracción de materiales de construcción como piedra, arena y grava. Se incluyen en esta definición las excavaciones realizadas para la extracción de arcillas comúnmente llamadas chircales.

Las canteras se presentan en general a la ciudad de Bogotá y en cercanías de poblaciones principales de la sabana, donde se explotan arenas, recebo, gravas y arcillas (INGEOMINAS, 1995 - 1997). Las arcillas se obtienen de las formaciones Bogotá y Guaduas mientras los recebos y arenas se extraen de rocas de las formaciones Arenisca Dura, Pleaners, Labor y Tierna. Las gravas e igualmente arenas se obtienen de los sedimentos fluviales de las formaciones Tilatá y Tunjuelito.

Planicie o llanuras de inundación en zonas urbanas (Azupi)

Superficie de morfología plana, baja a ondulada, eventualmente inundable. Se localiza bordeando los cauces fluviales que se encuentran en el casco urbano.

1.1.2.2.2 Unidades y Subunidades de origen Denudativo

Deslizamiento translacional (Dcdtr – Dcdta)

Deslizamiento de rocas o tierra que involucra movimiento a lo largo de una superficie de falla más o menos planar. El movimiento es controlado por planos someros de debilidad (Planos de estratificación o el contacto entre un plano rocoso y los detritos suprayacentes). De acuerdo con su edad relativa pueden ser recientes (Dcdtr) o antiguo (Dcdta).

Cerros residuales (Dcr)

Cerros de morfología alomada o colinada de cimas redondeadas de laderas cortas convexas muy inclinadas asociadas con suelos residuales gruesos. Su origen se debe posiblemente a procesos de meteorización diferencial intensa en climas húmedos tropicales diferentes a los actuales.

Se encuentran asociados a rocas de las formaciones Labor y Tierna, localmente con suelos residuales y con desarrollo de drenaje radial poco denso. En el sector norte de Cogua son cerros irregulares de 2 – 4 Km² de extensión y 50 - 100 m de elevación, desarrollado en rocas arcillolíticas blandas de la formación Guaduas con suelos residuales arcillosos y localmente arenosos. Presentan drenaje radial denso y localmente con procesos de carcavamiento.

Conos de Talus (Dct)

Geoforma localizada al pie de zonas escarpadas en forma de cono o lóbulos, de longitud muy corta a corta, de formas rectas a convexas, inclinadas a muy inclinadas. Se forman esencialmente por acumulación mecánica de bloques angulares desprendidos por meteorización acentuada del escarpe adyacente. Se incluyen igualmente las acumulaciones de bloques caídos por la acción de actividad sísmica y volcánico. Se constituye de bloques angulares a subangulares de variado tamaño (0.5 – 3 m), clastosportados y localmente con matriz arenosa o arcillosa. Presentan espesores de 5- 35 m.

Glacis de acumulación (Dga)

Superficie de acumulación de longitudes moderadamente largas de formas cóncavas y suavemente inclinadas. Su génesis se asocia a la acumulación del material fino en zonas bajas...
por procesos de erosión laminar. Se incluyen igualmente los planos adyacentes, formados por rellenos de material coluvial fino con bloques, producto de la erosión laminar de las laderas circundantes y presentan espesores de 3 - 10 m.

- **Lomas (DI)**

Prominencia topográfica de morfología alomada o colinada, cimas redondeadas y amplias, de laderas cortas a muy cortas, convexas y pendientes muy inclinadas a muy abruptas, constituida por suelos residuales, con una altura menor de 300 metros sobre su nivel de base local. Su origen es relacionado a procesos intensos de meteorización y erosión diferencial.

- **Laderas de contrapendiente estructural Denudada (Dlcp)**

Superficies en declive localizadas en zonas de piedemonte, con la inclinación de los estratos en contra de la pendiente del terreno. Son de longitud corta a larga, de forma cóncavo convexa y de pendientes abruptas, cuyo origen está relacionado con rocas blandas erosionadas intensamente y asociadas con depósitos de coluvión gruesos.

Este tipo de ladera de morfología alomada se presenta localmente como franjas de 1–2 km en la zona de piedemonte asociada a laderas de contrapendientes de sierra homoclinal. Presentan laderas cóncavas muy erosionadas y asociadas a conos y lóbulos coluviales.

- **Laderas estructurales denudadas y residuales (Dled)**

Superficie en declive localizadas en zonas de piedemonte, de morfología alomada con la inclinación de los estratos en favor de la pendiente del terreno, son de longitud corta a larga, de forma cóncava y con pendientes abruptas. El origen está asociado con procesos erosivos y de disección intensa en rocas blandas con desarrollo de suelos residuales y coluviales gruesos.

Se presentan con inclinaciones entre 10° y 30°, localmente menores que la disposición estructural de las rocas donde se encuentran. Es igualmente característico el alto grado de disección relacionado con la formación de surcos y la cobertura de conos y lenguas coluviales.

- **Planchas estructurales denudadas – Espolones estructurales (Dlpd)**

Laderas y crestas simétricas de cimas agudas de morfología alomada y dispuestas transversales a las estructuras geológicas. Están constituidas por estratos delgados duros y blandos disectados profundamente en dirección perpendicular al rumbo de las capas, y que localmente definen salientes o crestas a manera de puentes entre espinazos estructurales.

Geoformas de estas características tiene una amplia distribución en la Sabana de Bogotá (cuencas media-alta) y se encuentran principalmente en los flancos de las grandes estructuras tales como sierras homoclinales y anticlinales que se disponen por lo general en dirección NNE a lo largo de la sabana. Las planchas estructurales denudadas se presentan tanto como espolones estructurales y como crestas perpendiculares entre espinazos estructurales. Los espolones estructurales se presentan como salientes de morfología alomada, dispuestas perpendiculares a las laderas estructurales de sierra homoclinal o anticlinal.

- **Conos y lóbulos coluviales y de solifluxión (Dco)**

Geoforma en forma de cono o lóbulos de longitudes cortas a largas, de formas convexas e inclinaciones suaves a abruptas. Se originan respectivamente por acumulación de materiales sobre las laderas tanto por procesos de escorrentía superficial como por flujo lento y viscoso de
suelo saturado y no saturado. Se constituyen de bloques angulares a subangulares de diferentes tamaños embebidos en material arcilloso en espesores del orden de 5 – 35 m.

1.1.2.2.3 Unidades y Subunidades de origen Glacial y periglacial

- **Cono de deyeción (Fcdy)**

Geoforma en forma de cono en planta y de 5° – 10° de inclinación de decenas de metros de extensión, ubicados en el punto donde los canales o quebradas llegan a zonas de valles amplios. Se constituyen de tierras, arena y grava, en espesores de 3 – 5 m. Se presentan localmente en el piedemonte de las sierras homoclinales que cruzan de norte a sur la sabana de Bogotá. Alcanzan extensiones de 0.5 – 2 km² e inclinaciones de 5° – 10°. Se constituyen localmente de gravas de 2 – 3 cm subredondeadas.

- **Cauce Activo (Fca)**

Canal de forma irregular excavado por erosión de las corrientes perennes o estacionales, dentro de macizos rocosos y/o sedimentos aluviales. Dependiendo de factores como pendiente, resistencia del lecho, carga de sedimentos y caudal, pueden persistir por grandes distancias. Los cauces rectos se restringen a valles estrechos en forma de V, generalmente relacionados al control estructural de fallas o diaclasas. Estos cauces cuando recorren grandes distancias pueden formar lagunas y rápidos. Cuando las corrientes fluyen en zonas semiplanas a planas (llanura aluvial), los cauces son de tipo meándrico o divagante, como producto del cambio súbito de la dirección del flujo. Dependiendo la cantidad de carga de sedimentos, la pendiente y caudal pueden llegar a formar sistemas anastomosados, trenzados, divergentes y otras unidades asociadas.

- **Planicie o llanuras de inundación (Fpi)**

Franja de terreno plana baja de morfología ondulada de 0.05 – 5 km de extensión, eventualmente inundable. Se presenta bordeando los cauces fluviales y se limita localmente por escarpes de terraza. Se constituye de 3 - 5 m de arcillas y limos producto de la sedimentación durante eventos de inundación fluvial. Se incluyen los planos fluviales menores en formas de “U” o “V” y conos coluviales menores, localizados en los flancos de los valles intramontanos.

- **Planicies y Deltas Lacustrinos (Fpla)**

Planicies extensas de aspecto aterrazado y morfología ondulada suavemente inclinada y limitada hacia los cauces por escarpes de 2 – 20 m de altura.

Se constituyen de arcillas grises con locales intercalaciones de arenas finas y delgados niveles de gravas y turbas en capas paralelas producto de la acumulación de materiales transportados por las corrientes locales hacia la cuenca ocupada por el antiguo lago de la Sabana de Bogotá. Espesores de 20 – 300 m.

1.1.2.2.4 Unidades y Subunidades de origen Morfoestructural Denudativo

- **Escarpe de línea de falla (Slf)**

Escarpe muy corto, abrupto, cóncavo o convexo, originado por erosión acentuada a lo largo de una línea de falla definida por el truncamiento de estructuras topográficas y geológicas.
Sierra homoclinal denudada (Sshle - Shscp)

Sierra simétrica o ligeramente simétrica elongada de morfología generalmente montañosa de cimas agudas y definida por una secuencia estratos o capas apilados e inclinados (> 35°) en una misma dirección por efecto de plegamiento intenso asociado localmente con fallamiento inverso.

Se conforman de laderas estructurales denudadas (Sshle), definidas por la inclinación de los estratos en favor de la pendiente (> 35°), de longitud corta a moderada larga de formas rectas a convexas y con pendientes escarpadas a muy escarpadas.

Laderas de contrapendiente denudadas (Shscp), definida por la inclinación de los estratos en contra de la pendiente, de longitud moderada a larga, de formas cóncavas a irregulares escalonadas y con pendientes escarpadas a muy escarpadas.

1.1.2.3 Pendientes

Chía está delimitada por un sistema montañoso en el que se destacan los Cerros Majuy (Cota), La Valvanera y Cerro de La Cruz (occidente) y Pan de Azúcar (oriente).

En el valle de los ríos Bogotá y Frío se presentan pendientes que oscilan entre 0 y 12%, predominando la clasificación Ligeramente inclinado, con pendientes de 3 – 7%. En los cerros orientales (Veredas Yerbabuena y Fusca) y cerros occidentales, se presentan pendientes entre 12% y 100%, predominando el rango 12-25%, con relieve fuertemente inclinado (Figura 9 a Figura 11).

Figura 9. Pendientes en porcentaje

Fuente: Consorcio Huitaca (2017)
Figura 10. Modelo Digital de Terreno

Fuente: DIRSIP, 2019

Figura 11. Pendientes en grados

Fuente: Consorcio Huitaca (2017)
1.1.3 Suelos y uso de la tierra

1.1.3.1 Unidades cartográficas

Se tomó la clasificación realizada en el documento diagnóstico del POMCA del Río Bogotá (Consorcio Huitaca, 2017). De acuerdo con esto, para el municipio de Chía se encuentran las unidades cartográficas presentadas en la **Tabla 4** y **Figura 12**.

Tabla 4. Unidades cartográficas de suelo

<table>
<thead>
<tr>
<th>Unidades cartográficas de suelo</th>
</tr>
</thead>
<tbody>
<tr>
<td>MsL05f1</td>
</tr>
<tr>
<td>MsL05g</td>
</tr>
<tr>
<td>MsH19f2</td>
</tr>
<tr>
<td>MsH21f2</td>
</tr>
<tr>
<td>MsH22e</td>
</tr>
<tr>
<td>MsH22e1</td>
</tr>
<tr>
<td>MsH22e2</td>
</tr>
<tr>
<td>MsL08e</td>
</tr>
<tr>
<td>MsL08e1</td>
</tr>
<tr>
<td>MsL08e2</td>
</tr>
<tr>
<td>MsL08r2</td>
</tr>
<tr>
<td>MsM03f</td>
</tr>
<tr>
<td>MsM03f1</td>
</tr>
<tr>
<td>MsM03f2</td>
</tr>
<tr>
<td>MsL03f</td>
</tr>
<tr>
<td>MsL03r2</td>
</tr>
<tr>
<td>MsL04f</td>
</tr>
<tr>
<td>MsL04f1</td>
</tr>
<tr>
<td>MsL04f2</td>
</tr>
<tr>
<td>MsM03f</td>
</tr>
<tr>
<td>MsM03f1</td>
</tr>
<tr>
<td>MsM03f2</td>
</tr>
<tr>
<td>MsM07e2</td>
</tr>
<tr>
<td>MsH19d2</td>
</tr>
<tr>
<td>MsH21e1</td>
</tr>
<tr>
<td>MsH21e2</td>
</tr>
<tr>
<td>MsL04f</td>
</tr>
<tr>
<td>MsL04f1</td>
</tr>
<tr>
<td>MsL04f2</td>
</tr>
<tr>
<td>MsM07e2</td>
</tr>
<tr>
<td>MsL07d1</td>
</tr>
<tr>
<td>MsL07d2</td>
</tr>
<tr>
<td>MsL08d1</td>
</tr>
<tr>
<td>MsL08d2</td>
</tr>
<tr>
<td>MxL09d2</td>
</tr>
<tr>
<td>RzM02b1</td>
</tr>
<tr>
<td>MsL07e2</td>
</tr>
<tr>
<td>MsL07d1</td>
</tr>
<tr>
<td>MsL08d1</td>
</tr>
<tr>
<td>MsL08d2</td>
</tr>
<tr>
<td>MxL09d2</td>
</tr>
<tr>
<td>RzM11c2</td>
</tr>
<tr>
<td>LxM09b</td>
</tr>
<tr>
<td>RzM11a</td>
</tr>
<tr>
<td>RzM11b2</td>
</tr>
<tr>
<td>RzM12a</td>
</tr>
<tr>
<td>RzM12b</td>
</tr>
<tr>
<td>LxM04a</td>
</tr>
<tr>
<td>RzM06a</td>
</tr>
<tr>
<td>RzM06b</td>
</tr>
<tr>
<td>RzM07a</td>
</tr>
<tr>
<td>RzM08a</td>
</tr>
</tbody>
</table>

Nota: La información de las unidades cartográficas ha sido adaptada para su mejor comprensión en el contexto del documento. Las clasificaciones y descripciones pueden variar ligeramente en función de la fuente y el contexto específico.
Unidades cartográficas de suelo

<table>
<thead>
<tr>
<th>Unidad</th>
<th>Zona/Clasificación</th>
</tr>
</thead>
<tbody>
<tr>
<td>RzM08b</td>
<td></td>
</tr>
<tr>
<td>RzM09a</td>
<td></td>
</tr>
<tr>
<td>LxM05az</td>
<td></td>
</tr>
<tr>
<td>RzL31az</td>
<td></td>
</tr>
<tr>
<td>RzM10ai</td>
<td></td>
</tr>
<tr>
<td>RzM10az</td>
<td></td>
</tr>
<tr>
<td>RzM10bi</td>
<td></td>
</tr>
<tr>
<td>RzM13az</td>
<td></td>
</tr>
<tr>
<td>RzM17ai</td>
<td></td>
</tr>
<tr>
<td>RzM17az</td>
<td></td>
</tr>
<tr>
<td>RzM17bi</td>
<td></td>
</tr>
<tr>
<td>RzM18ai</td>
<td></td>
</tr>
</tbody>
</table>

Clima: fríos húmedos, fríos secos, cálidos secos relieve plano. Suelos superficiales limitados por el nivel freático imperfectamente a mal drenados, texturas finas, medias y moderadamente gruesas; reacción ligeramente ácida a neutra, media a alta capacidad de intercambio catiónico y fertilidad baja.

Zones Urbanas (ZU)

Cuerpos de agua (CA)

Fuente: Adaptado de Consorcio Huitaca (2017)

Figura 12. Unidades cartográficas de suelo

Fuente: Consorcio Huitaca (2017)

1.1.3.2 Capacidad de uso (Clasificación agrológica)

Las unidades de capacidad referenciadas a continuación se tomaron del Levantamiento Detallado de Suelos en las Áreas Planas de 14 municipios de la Sabana de Bogotá (IGAC, 2012), sin embargo, solo se encuentran descritas para las zonas planas del municipio, como se observa en la Figura 13.

Las clases agrológicas, a escalas nacional, regional y local, se identifican por números arábigos que representan desde los mejores suelos para destinación agrícola (clase 1) hasta aquellos con el mayor número de limitantes para el uso agrícola (clase 8); estos últimos pasan a ser áreas de protección, recuperación o conservación.
En términos generales, las clases 1 y 2 agrupan tierras arables, con capacidad para cualquier tipo de cultivo adaptable a las condiciones de piso térmico con necesidad de pocas prácticas de conservación de los suelos.

Las clases 3 y 4 agrupan tierras arables con capacidad para algunos cultivos, adaptables a las condiciones ambientales, con necesidad de aplicación de moderadas prácticas de conservación de suelos.

La clase 5 son tierras que en las condiciones actuales solo son aptas para ganadería estacional, conservación de la vegetación natural, refugio de la fauna silvestre y conservación de los cauces de agua; pero pueden ser recuperadas para usos agrícolas a nivel comercial.

La clase 6 define tierras aptas para ganadería con praderas mejoradas, cultivos permanentes que requieren prácticas intensas de conservación de suelos y reforestación.

La clase 7 agrupa tierras agroforestales, con posibilidades de uso sostenible del bosque y requiere de prácticas muy intensas de conservación de suelos y revegetalización con especies propias de la región.

La clase 8 agrupa tierras destinadas a la recuperación, conservación o preservación de las especies naturales.

Las subclases son categorías subordinadas a las clases agrológicas, las cuales tienen el mismo tipo de limitantes y grado de afectación; se identifican mediante la adición de una letra minúscula que sigue al respectivo dígito de la clase; en la medida que aumenta el orden de la clase, pueden adicionarse hasta tres letras que indican en donde radica la limitación. Se han definido las siguientes subclases (IGAC, 2014):
p = pendientes.

e = erosión.

h = exceso de humedad por lámina de agua o encharcamientos e inundaciones.

s = limitaciones en la zona radicular.

c = limitaciones por clima adverso.

1.1.3.2.1 Grupo de manejo 2c1

Estas fases cartográficas están ubicadas a una altura comprendida entre 2.565 y 2.583 msnm, en clima frío seco con temperatura media anual de 13.8°C y precipitación de 692.3 milímetros anuales.

El material parental lo conforman cenizas volcánicas y materiales aluviales medios. Los suelos son profundos, bien drenados, de texturas medias y moderadamente finas, reacción fuerte a moderadamente ácida, capacidad de intercambio catiónica alta, bases totales medias a muy bajas, saturación de bases baja, calcio alto en la sección superior y medio a bajo en el resto del perfil, magnesio bajo a medio, relación Ca/Mg aceptable e ideal, fósforo alto a bajo, potasio medio a bajo, sodio bajo, carbón orgánico alto a medio, saturación de aluminio baja y fertilidad alta y muy alta.

Estos suelos tienen limitaciones ligeras para el uso y manejo tales como reacción fuerte a moderadamente ácida, bajos contenidos de fósforo en algunos horizontes, frecuente ocurrencia de heladas en los dos semestres del año que puede ocasionar pérdidas parciales e incluso totales de cosechas o pasturas y déficit de lluvias en un semestre del año.

Estas tierras actualmente se encuentran en pastos para la ganadería y agricultura intensivas, también, algunas especies arbóreas introducidas.

Estos suelos requieren prácticas de manejo relacionadas con:

- Diversificación de cultivos y utilización de variedades mejoradas y certificadas.
- Mantenimiento o renovación de pasturas.
- Utilización cuidadosa de prácticas de mecanización agrícola para evitar en lo posible el deterioro de las propiedades físicas de los suelos, principalmente su estructura.
- Fertilización fraccionada según los requerimientos del cultivo, aplicación de fertilizantes fosforados.
- Aplicación de enmiendas.
- Riego complementario en época de verano para contrarrestar el impacto de las heladas.

Las tierras de esta unidad de manejo tienen aptitud para:

- Cultivos transitorios de clima frío (papa, maíz, etc.), hortalizas con riego (acelga, espinaca, remolacha), plantas aromáticas de buena aceptación en el mercado internacional y local, incluso frutales de buena aceptación en el mercado regional (curuba, feijoa, etc.).
- Cultivos agroindustriales bajo invernadero (rosa, clavel, pompón, astromelia, champiñones).
- Ganadería intensiva con utilización de pasturas introducidas (ray grass, falsa poa, azul orchoro, etc.), para producción comercial de leche. Uso de ganado seleccionado, programas de control fitosanitario, alimentación suplementaria y en general la aplicación de paquetes tecnológicos que permitan alcanzar altos rendimientos.

1.1.3.2.2 Grupo de manejo 2ps1

Estas unidades están ubicadas a alturas entre 2.565 y 2.583 msnm, en los climas frío seco y frío húmedo, con temperatura media anual entre 13,4°C y 13,7°C y precipitación entre 691 y 1.106,4 milímetros anuales.
El material parental lo conforman cenizas volcánicas y aluviones mixtos. Los suelos son profundos y muy profundos, bien drenados, de texturas medias y moderadamente finas, reacción muy fuerte a ligeramente ácida, capacidad de intercambio catiónica alta y media, bases totales bajas a medias, saturación de bases baja, calcio bajo a alto, magnesio bajo a medio, relación Ca/Mg aceptable e ideal, fósforo bajo a alto, potasio medio a bajo, sodio bajo, carbón orgánico alto a medio y fertilidad moderada a muy alta.

Estos suelos presentan limitaciones ligeras para el uso y manejo como reacción muy fuerte a ligeramente ácida, bajos contenidos de fósforo y potasio en algunos horizontes, frecuente ocurrencia de heladas en los dos semestres del año que ocasionan pérdidas parciales e incluso totales de cosechas y pasturas y déficit de lluvias en un semestre del año.

Estas tierras actualmente se encuentran en pastos para ganadería intensiva y en menor proporción agricultura intensiva, con remanentes de vegetación natural arbórea y algunas especies arbóreas introducidas.

Estos suelos requieren prácticas de manejo relacionadas con:
- Rotación de cultivos y el uso de variedades certificadas.
- Mejoramiento de praderas.
- Mecanización agrícola que no deterioren en lo posible las características físicas de los suelos, principalmente su estructura natural.
- Aplicación de fertilizantes de acuerdo con la disponibilidad de nutrientes dado por los resultados de los análisis químicos y los requerimientos y estado de crecimiento de los cultivos.
- Aplicación de enmiendas.
- Riego complementario para reducir el impacto de las heladas.

Las tierras de esta unidad de manejo tienen aptitud para:
- Cultivos transitorios de clima frío (maíz, arveja, fresa, etc.), hortalizas (Coliflor, repollo, brócoli, lechuga, zanahoria, rábano, cebollas, apio, acelga, espinaca, calabaza) e incluso frutales transitorios como la curuba o permanentes como la feijoa.
- Ganadería intensiva con utilización de pasturas introducidas (ray grass, falsa poa, azul orchoro, pastos de corte, etc.), para producción comercial de leche, uso de ganado seleccionado, programas de control fitosanitario, alimentación suplementaria.

1.1.3.2.3 Grupo de manejo 2s2

Estas fases cartográficas están ubicadas a una altura comprendida entre 2.550 y 2.590 msnm, en clima frío seco, con una temperatura media anual entre 13,4°C y 13,7°C y una precipitación de 671,9 a 693,9 milímetros anuales.

El material parental lo conforman las cenizas volcánicas y aluviones mixtos. Los suelos son moderadamente profundos a muy profundos, bien drenados, texturas medias y moderadamente finas, reacción fuertemente ácida a moderadamente alcalina, capacidad catiónica de cambio alta, bases totales y saturación de bases medias a altas, calcio y magnesio medio a alto, relación Ca/Mg ideal y aceptable, fósforo bajo a alto, potasio medio a bajo, sodio medio y bajo, carbón orgánico alto en la sección superior a bajo en el resto del perfil, fertilidad alta y muy alta.

Estos suelos tienen limitaciones ligeras para el uso y manejo, como reacción fuertemente ácida y moderadamente alcalina, bajos contenidos de fósforo y potasio en algunos horizontes, ocurrencia de heladas en los dos semestres del año que ocasiona pérdidas parciales e incluso totales de cosechas y pasturas, déficit de lluvias en un semestre del año.
Estas tierras actualmente se encuentran en pasturas para la ganadería intensiva y a la agricultura comercial, y algunas especies arbóreas introducidas.

Estos suelos requieren de prácticas de manejo relacionadas con:
- Rotación de cultivos y uso de variedades mejoradas y certificadas.
- Mejoramiento de praderas.
- Utilización cuidadosa de prácticas de mecanización agrícola que no deterioren en lo posible las características físicas de los suelos, principalmente su estructura natural.
- Aplicación de enmiendas.
- Aplicación de fertilizantes fosforados.
- Fraccionamiento de la fertilización.

Las tierras de esta unidad de manejo tienen aptitud para:
- Cultivos transitorios de clima frío (papa, maíz, arveja, fresa con riego, etc.), hortalizas (repollo, ajo, coliflor, etc.) e incluso frutales de buena aceptación en el mercado regional (feijoa, etc.).
- Para ganadería intensiva con utilización de pasturas introducidas (ray grass, falsa poa, azul orchoro, pastos de corte, pastos forrajeros, etc.), para producción comercial de leche. Uso de ganado seleccionado, programas de control fitosanitario, alimentación suplementaria y en general la aplicación de paquetes tecnológicos que permitan alcanzar altos rendimientos.

1.1.3.2.4 Grupo de manejo 2sc1

Estas fases cartográficas están ubicadas a una altura que varía entre 2.560 a 2.568 msnm con una temperatura media anual de 13,7°C y una precipitación pluvial de 700,2 a 1.098,2 milímetros anuales, condiciones que los enmarcan en clima frío seco.

El material parental lo conforman los depósitos de materiales coluviales con influencia de cenizas volcánicas. Los suelos son: profundos, bien drenados, texturas moderadamente gruesas y moderadamente finas, reacción muy fuertemente ácida, capacidad catiónica de cambio baja a alta, bases totales de bases muy bajas, saturación de bases muy baja, calcio y magnesio bajo, relación Ca/Mg ideal y en desequilibrio en algunos horizontes, fósforo medio y bajo, potasio medio en superficie y bajo en el resto del perfil, sodio bajo, carbón orgánico alto a bajo, saturación de aluminio alta y muy alta, fertilidad baja.

Estos suelos tienen limitaciones ligeras para el uso y manejo como reacción muy fuertemente ácida, baja retención de nutrientes, bajos contenidos de calcio y magnesio, fertilidad baja, frecuente ocurrencia de heladas que ocasiona pérdidas parciales e incluso totales de cosechas y pasturas déficit de lluvias en un semestre del año.

Estas tierras actualmente se encuentran en pasturas para la ganadería intensiva y en menor proporción a la agricultura intensiva y comercial, y algunas especies arbóreas introducidas.

Estos suelos requieren de prácticas de manejo relacionadas con:
- Diversificación de cultivos con rotación, el uso de variedades mejoradas y certificadas.
- Introducción de pastos mejorados.
- Aplicación cuidadosa de prácticas de mecanización agrícola que no deterioren en lo posible las características físicas de los suelos, principalmente su estructura natural.
- Aplicación de fertilizantes fraccionados de fósforo de baja solubilidad.
- Aplicación de enmiendas, como encalado.
- Riego complementario en cantidad y frecuencia en época de verano para contrarrestar el impacto de las heladas y en las zonas secas.
Las tierras de esta unidad de manejo tienen aptitud para:
- Cultivos transitorios propios de clima frío (papa, maíz, etc), hortalizas (repollo, lechuga, espinaca, acelga), e incluso frutales de buena aceptación en el mercado regional (tomate de árbol, feijoa, etc).
- Para ganadería intensiva con utilización de pasturas introducidas (ray grass, falsa poa, azul orchoro, etc), para producción comercial de leche. Uso de ganado seleccionado, programas de control fitosanitario, alimentación suplementaria y en general la aplicación de paquetes tecnológicos que permitan alcanzar altos rendimientos.

1.1.3.2.5 Grupo de manejo 3hs-1

Las limitantes principales de estos suelos para el uso y manejo están dados por limitaciones por nivel freático moderadamente profundo, también se presentan desbalances a nivel nutricional y la alta retención de fosfatos en algunos sectores.

Actualmente estas tierras están siendo utilizadas en agricultura intensiva con cultivos de hortalizas y ganadería para producción de leche.

Los suelos de este grupo de manejo tienen aptitud para agricultura intensiva con cultivos de hortalizas, papa, maíz, aromática, flores, frutales (mora, fresa, brevas, tomate de árbol) igualmente ganadería semi-intensiva o estabulada con pastos de corte.

Las prácticas de manejo que se debe dar a estas tierras consisten:
- Mantenimiento de los drenajes para evitar el encharcamiento o el ascenso del nivel freático sobre todo en cultivos con raíces profundas.
- Aplicación de fertilizantes con el fin de mantener o mejorar el balance nutricional y satisfacer las necesidades de los cultivos.
- Fertilización fosfórica con fuentes de solubilidad lenta, y en caso de fuentes algo más solubles fraccionarlas.
- Utilización de prácticas de labranza de conservación con el fin de evitar la degradación del suelo.
- Aplicar fertilizantes de baja acidez residual con el fin de prevenir una mayor acidificación de los suelos.

Las tierras de esta unidad de manejo tienen aptitud para:
- Cultivos transitorios intensivos, propios de clima frío (papa, maíz, arveja, fresa, etc.), hortalizas e incluso frutales de buena aceptación en el mercado regional (curuba, feijoa, etc.).
- Para ganadería semi-intensiva o extensiva con utilización de pasturas introducidas con algo de tolerancia a nivel freático moderadamente profundo (raygráis inglés, festuca alta y media, pasto cinta, y pasto timothy, para las zonas encharcables y pasto azul y kikuyo suelos no encharcables, etc.). Para producción comercial de leche, uso de ganado seleccionado, programas de control fitosanitario, alimentación suplementaria y en general la aplicación de paquetes tecnológicos que permitan alcanzar altos rendimientos.
- De ser necesario la aplicación de riego este se debe realizar con métodos diferentes a la aspersión con el fin de evitar la pérdida de la estructura del suelo.
- Para el caso de las praderas, realizar los cortes y periodos de descanso, de tal manera que se optimize su explotación, evitando el sobrepastoreo.

1.1.3.2.6 Grupo de manejo 3s-1

Este grupo está ubicado a una altura de 2.582 msnm, en clima frío húmedo con una temperatura media anual de 13,7°C y una precipitación de 798,2 milímetros anuales.
La vegetación natural ha sido reemplazada por pastos principalmente kikuyo (Pennisetum clandestinum); se encuentran especies arbóreas nativas como arrayán (Myrcia popayanensis Hieron), sauce (Salix pendula), e introducidas como el eucalipto común (Eucaliptus globulus) y el pino (Pinus sp).

El material parental se constituye de cenizas volcánicas y aluviones finos. Son suelos moderadamente profundos, profundos y muy profundos; de texturas medias; bien drenados; reacción fuertemente ácida y fertilidad natural alta, capacidad de intercambio catiónica alta y saturación de bases baja.

Las limitaciones de uso y manejo para este tipo de suelos son la profundidad efectiva moderada en algunos sectores y la ocurrencia de heladas en los dos semestres del año.

Estos suelos requieren de prácticas de manejo relacionadas con:
- Fertilización de los cultivos con énfasis en los nutrientes limitantes.
- Encalamiento en algunos sectores donde la saturación de Al es superior al 20%.
- Fertilización fosfórica de forma fraccionada y localizada con el objetivo de evitar pérdidas por fijación con fuentes de lenta liberación.
- Utilización microorganismos solubilizadores de fósforo como micorrizas.
- Incorporación de materia orgánica (compost, residuos de cosecha, abonos verdes).

Las tierras de esta unidad de manejo tienen aptitud para:
- El cultivo de la papa, el cual tolera niveles altos de aluminio y acidez.
- Cultivos transitorios propios de clima frío con ciertas prácticas de manejo (maíz, arveja, fresa, etc.), hortalizas e incluso frutales de buena aceptación en el mercado regional (curuba, feijoa, etc.).
- Para ganadería semi-intensiva o extensiva con utilización de pasturas introducidas (kikuyo, raygrás, falsa poa, azul orchoro, etc.), para producción comercial de leche.

1.1.3.2.7 Grupo de manejo 3sc-1

Estas unidades se ubican a una altura de 2.683 msnm, en clima frío seco con una temperatura media anual de 13,38°C y una precipitación de 744,02 milímetros anuales.

Los suelos han evolucionado a partir de material parental conformado por cenizas volcánicas y materiales medios. Son suelos profundos de texturas medias y moderadamente finas, bien drenados, reacción fuertemente ácida y fertilidad natural moderada, capacidad de intercambio catiónica alta y saturación de bases baja, la saturación de aluminio es mayor al 40%.

Las limitaciones para el uso y manejo de estos suelos son la ocurrencia de heladas en los dos semestres del año y la alta saturación de aluminio en gran parte de esta subclase.

La vegetación natural ha sido reemplazada por pastos principalmente kikuyo (Pennisetum clandestinum) para desarrollar actividades ganaderas; se encuentran algunas especies arbóreas introducidas como el eucalipto común (Eucaliptus globulus) y el pino patula (Pinus patula).

Los suelos de este grupo de manejo tienen aptitud para agricultura intensiva con cultivos de hortalizas, zanahoria, papa, maíz, frijol, alverja, aromáticas, flores, frutales (mora, brevas, tomate de árbol) y ganadería intensiva.

Estos suelos requieren de prácticas de manejo relacionadas con:
- Se recomienda fertilización de sostenimiento, es decir, con el fin de reponer al suelo lo que las plantas extraen; así mismo, se recomienda que la aplicación del fósforo sea fraccionada para evitar disponibilidad por su fijación.
- En sectores donde la saturación de aluminio es mayor al 40% se hace necesario implementar prácticas de encalamiento que permitan reducir el aluminio, dependiendo de la tolerancia del cultivo que se desee implementar, esta labor debe realizarse periódicamente dado que este insumo desciende lentamente en el suelo y su efecto puede disiparse después de dos años.

Por esta razón, en la zona es recomendable realizar una distribución inicial de cal alta incorporándola a una profundidad entre 0 y 20 cm, cuando se introducen pastos mejorados o se decide pasar a la producción agrícola y posteriormente, con una periodicidad anual, hacer distribuciones de mantenimiento superficiales, con dosis menores, para evitar problemas de toxicidad.

- Aplicación de riego complementario teniendo en cuenta la velocidad de infiltración, la capacidad de retención de humedad de los suelos y los requerimientos de los cultivos.

- Preparación mecanizada de los suelos utilizando técnicas y maquinaria que preserven la estructura natural de los suelos.

- Fertilización con abonos de fórmula completa con bajo grado de acidez residual para evitar la acidificación en mayor grado de los suelos.

- Adición de abonos orgánicos no solo como aporte de nutrientes sino para mejorar algunas propiedades físicas como la estructura, la porosidad, la infiltración y la permeabilidad.

- Rotación de cultivos con el fin de mejorar y mantener la estructura del suelo.

- Prevención o controlar las heladas utilizando las siguientes prácticas: evitar las siembras en meses propicios al fenómeno; utilizar variedades resistentes; aplicar abonos potásicos, debido a que tiene la propiedad de aumentar la concentración del jugo celular y esto se traduce en un descenso del punto de congelación, con lo cual se eleva la resistencia de las plantas a las heladas; aplicación de riego; uso de fogatas; uso de cubiertas de mantillo, tamo, plástico, etc.

Las tierras de esta unidad de manejo tienen aptitud para:

- El cultivo de la papa, el cual tolera niveles altos de aluminio y acidez.

- Producción de hortalizas como ajo, lechuga, remolacha y repollo, entre otros, sembrando en contra de la pendiente y manejando el recurso hídrico para evitar excesos de aplicación, tanto por las necesidades de las plantas como los problemas de escorrentía.

- Pastos introducidos como kikuyo, porque se adapta bien a estas condiciones y pastos de corte que se los puede utilizar para ganadería orientada a la producción comercial de leche.

1.1.3.2.8 Grupo de manejo 4hs2

Estas fases cartográficas están ubicadas a una altura que varía entre 2.586 y 2.590 msnm con temperatura media anual de 13,6°C y precipitación de 926,28 milímetros anuales, condiciones que lo enmarcan en clima frío seco y frío húmedo.

El material parental está compuesto por aluviones finos, medios y cenizas volcánicas. Los suelos son superficiales y muy superficiales, muy pobres y pobremente drenados, texturas moderadamente gruesas, medias, moderadamente finas y finas, reacción muy fuertemente ácida a fuertemente acida, alta capacidad catiónica de cambio, bases totales bajas y muy bajas, saturación de bases baja y alta en las fases GP3saz, GP4saz, GP5saz, SO3saz, SO3sbz, SO4saz, SO4saz y YB3saz, calcio alto y bajo, magnesio medio y bajo, relación Ca/Mg alta y media, fósforo varía de bajo a alto, contenido de potasio medio, carbón orgánico varía de bajo a alto, fertilidad alta y baja.

Estos suelos tienen limitación para el uso y manejo principalmente por exceso de humedad (h) y por suelos (s); los primeros se originan en el drenaje pobre, el nivel freático alto y los frecuentes encharcamientos e inundaciones; los segundos por poca profundidad efectiva y permeabilidad muy lenta; en menor grado de severidad presentan heladas en los dos semestres del año, fuerte acidez y bajos contenidos de fósforo y potasio.
Estas tierras actualmente se encuentran en pastos para ganadería de producción lechera.

El uso recomendado de estas tierras es la ganadería en pastos introducidos adaptados al exceso de humedad. Con prácticas de adecuación mediante la construcción de drenajes superficiales y subsuperficiales, en agricultura el uso es muy restringido y se requiere un laboreo muy cuidadoso.

Estos suelos requieren de prácticas de manejo relacionadas con:
- Establecer un sistema de drenaje para eliminar los excedentes de agua o instalar un sistema de bombeo para desalojar el exceso de agua.
- Realizar labranza mínima con el fin de evitar la compactación o realizarla en condiciones adecuadas de humedad del suelo dadas por el índice de plasticidad para no degradar algunas propiedades físicas como la estructura, la porosidad.
- Realizar prácticas de adecuación tendientes a controlar las inundaciones y los encharcamientos y profundizar el nivel freático.
- Aplicar fertilizantes químicos que contengan elementos menores.
- Requiere practicas cuidadosas tendientes a reducir la acidez en los lugares que sea necesario.
- Aplicar fertilizantes de acuerdo con la disponibilidad de nutrientes y los resultados de los anáisis químicos, los requerimientos y fenología del cultivo.
- Evitar el sobre pastoreo estableciendo la capacidad de carga del pastizal en especial en época de abundantes lluvias, para contrarrestar el mazamorreo del suelo.
- Establecer pastos de corte en las áreas donde se producen los encharcamientos.

Las tierras de esta unidad de manejo tienen aptitud para:
- Ganadería con pastos tolerantes al exceso de humedad.
- Agroforestería en pendientes superiores al 3%.
- Regulación de caudales o zonas amortiguadoras en flujos superficiales de aguas.

1.1.3.2.9 Grupo de manejo 4hs-3

Estas fases cartográficas están ubicadas a una altura que varía entre 2.510 y 2.650 msnm con temperatura media anual de 13,72°C y precipitación pluvial de 772,88 milímetros anuales, condiciones que lo enmarcan en clima frío seco.

El material parental está compuesto por aluviones finos, medios. Los suelos son superficiales, reacción muy fuertemente ácida, alta capacidad de intercambio catiónica, calcio alto, bases totales en el primer y último horizonte son medias, y bajas en el segundo y tercer horizonte; saturación de bases media en superficie y baja en el resto del perfil, magnesio medio, potasio y fósforo medios en los dos primeros horizontes y bajos en el resto del perfil y fertilidad moderada.

Estos suelos tienen limitación para el uso y manejo principalmente por la poca profundidad efectiva, nivel freático alto, drenaje natural imperfecto y pobre, reacción muy fuertemente ácida, baja saturación de bases.

Estas tierras actualmente se encuentran en pastos para ganadería de producción lechera.

Estos suelos requieren de prácticas de manejo relacionadas con:
- Establecimiento de drenajes superficiales que eviten la acumulación de agua libre por períodos prolongados en la superficie del suelo y subsuperficiales para bajar el nivel freático.
- Realizar labranza mínima con el fin de evitar la compactación o realizarla en condiciones adecuadas de humedad del suelo dadas por el índice de plasticidad para no degradar la estructura y la porosidad.
- Aplicar fertilizantes químicos que contengan elementos menores.
- Aplicación de cal para disminuir la acidez y el aluminio y como fertilizante.
- Utilización de prácticas para prevenir las heladas.

Las tierras de esta unidad de manejo tienen aptitud para:
- Ganadería con pastos tolerantes al exceso de humedad o siembra de variedades para corte.
- Cultivos de poca profundidad radicular como hortalizas que requieran camas o surcos con 50 cm de elevación, con el fin de evitar la asfixia de las raíces.

1.1.3.2.10 Grupo de manejo 4ps-3

Estas fases cartográficas están ubicadas a altura de 2.561 msnm con temperatura media anual de 13.8ºC y precipitación pluvial de 1.003 milímetros anuales, condiciones que lo enmarcan en clima frío húmedo.

El material parental lo constituyen aluviones gruesos y medios sobre gruesos. Los suelos son profundos, bien drenados, texturas medias y moderadamente finas, reacción fuertemente ácida, capacidad catiónica de cambio media en superficie y muy baja en el resto del perfil, bases totales bajas, saturación de bases baja en el primer horizonte y media y alta en profundidad, calcio y magnesio bajos, relación Ca/Mg baja en el primer horizonte, alta en el segundo horizonte y baja en el resto del perfil, potasio bajo, fósforo alto en el primer horizonte y bajo en profundidad, carbón orgánico alto en el primer horizonte y bajo en profundidad, bajo contenido de sodio, saturación de aluminio media hasta 25 cm y baja en profundidad, fertilidad moderada.

Las limitantes de estos suelos para el uso y el manejo se deben a pendientes moderadamente inclinadas, susceptibilidad a la erosión, inundaciones ocasionales y movimientos en masa (pata de vaca), fuerte acidez, baja saturación de bases, bajo contenido de calcio y magnesio. Estas tierras actualmente se encuentran en pastos para ganadería de producción lechera.

Las prácticas de manejo que se deben implementar consisten:
- Aplicar cales para reducir la acidez y mejorar la disponibilidad de nutrientes.
- Realizar labranza mínima.
- Pastoreo oportuno y adecuado manejo de pastos, con capacidad de carga adecuada, evitando el sobrepastoreo.
- Utilización de prácticas culturales, mecánicas y agronómicas tendientes al control de la erosión.
- Sembrar cultivos permanentes o densos.
- Mantener la cobertura vegetal natural.
- Siembra de barreras vivas con acacia, eucalipto, entre otros.

Las tierras de esta unidad de manejo tienen aptitud para:
- Agricultura con unos pocos cultivos permanentes, como tomate de árbol, mora, breva, feijoa.
- Ganadería con pastos de corte.

1.1.3.2.11 Grupo de manejo 4s-1

Estas fases cartográficas están ubicadas a una altura que varía entre 2.500 y 2.580 msnm con una temperatura media anual de 13.6ºC y una precipitación de 926,3 milímetros anuales, condiciones que lo enmarcan en clima frío húmedo.

Los suelos se originaron a partir de cenizas volcánicas sobre arcillas lacustres y arcillas lacustres; son superficiales, de texturas moderadamente finas y finas, bien drenados, reacción ligeramente
ácida, capacidad de intercambio catiónico alta en el primer horizonte y media en profundidad, saturación de bases media y alta, fósforo alto en el primer horizonte y fertilidad alta.

Las limitantes de estos suelos para el uso y el manejo se deben, a la poca profundidad efectiva y baja permeabilidad por presencia de arcillas.

Estas tierras actualmente se encuentran en pastos y algunas especies arbóreas.

Estos suelos requieren de prácticas de manejo relacionadas con:
- Preparar los suelos en condiciones adecuadas de humedad, para no degradar la estructura y la porosidad y producir compactación.
- Realizar labores de subsoleo tendientes a romper la capa que limita la profundidad efectiva del suelo a fin de mejorar la profundidad efectiva del suelo.
- Establecer pastizales u otros cultivos con sistemas radiculares poco profundos.
- Conservar el nivel adecuado de humedad para su manejo.
- Aplicación fertilizantes de acuerdo con los resultados de los análisis químicos y los requerimientos y estado de crecimiento de los cultivos.

Las tierras de esta unidad de manejo tienen aptitud para:
- Producción agrícola de cultivos con poca penetración radicular, como hortalizas, aromáticas, ajo, frijol, arveja.
- Para ganadería semi-intensiva con utilización de pasto como kikuyo, para producción comercial de carne y leche.
- Producción de flores bajo invernadero.

1.1.3.2.12 Grupo de manejo 5hs1

Estas tierras se ubican en condiciones de clima frío húmedo, con promedio anual de temperatura de 13,68 °C y precipitación de 822,53 mm; la altura sobre el nivel del mar varía de 2.566 a 2.600 m.

El material parental lo conforman las cenizas volcánicas y aluviones finos. Son suelos muy superficiales y superficiales, de texturas medias y moderadamente finas, de reacción muy fuertemente ácida a fuertemente ácida, capacidad de intercambio catiónica alta, saturación de bases baja, carbono orgánico alto y fertilidad alta.

Las limitaciones de uso y manejo para este tipo de suelos son la poca profundidad efectiva debido a la fluctuación del nivel freático, drenaje pobre y encharcamientos.

El uso actual de estas tierras son la ganadería para producción de leche, con pasto kikuyo (Pennisetum clandestinum Hochst. ex Chiov); sin embargo, quedan vestigios de vegetación natural como aliso (Alnus jorullensis H.B.K.), trompeta (Bocconia frutescens L.), roble (Quercus humboldtii Bonpl), y helecho (Polypodium lanceolatum L.) y especies introducidas como eucalipto común (Eucalyptus globulus Labill) y el pino patula (Pinus patula Schlecht et Cham).

Estos suelos requieren de prácticas de manejo relacionadas con:
- Drenajes artificiales para disminuir el nivel freático y evitar los encharcamientos. Para la realización de dichos drenajes se debe tener en cuenta la zona de evacuación de agua y la profundidad a la cual se deben realizar para garantizar la eficacia de la labor.
- Realización de drenajes paralelos que son más eficaces con respecto a la pendiente plana con topografía uniforme, si la topografía es irregular se aconseja la realización de drenajes tipo espina de pescado.
- En los suelos con limitaciones por arcillas, la generación de drenajes subterráneos con un arado topo, favorece la evacuación de agua de los lotes, simulando un drenaje natural.
- No preparar el suelo en condiciones de saturación de agua, para evitar pérdidas en estructura y compactación del suelo.

Las tierras de esta unidad de manejo tienen aptitud para:
- Cultivos de hortalizas de baja profundidad efectiva y en camas con 50 cm de elevación, con el fin de evitar la asfixia de las raíces, tales como lechuga, espinaca, rábano, repollo, remolacha, entre otros.
- Ganadería de leche, con pastos mejorados como ray grass (Lolium sp.) y pasto azul (Holcus lanatus L.). Adicionalmente, se recomienda la utilización de pastos de corte y cultivos de ensilaje como avena (Avena sativa L.), para tenerlas como suministro en épocas críticas de encharcamiento.

1.1.3.2.13 Grupo de manejo 6hs1

Esta unidad se ubica en clima frío seco, con temperatura media de 13,6 °C y precipitación de 791,81 mm; la altura sobre el nivel del mar varía de 2.510 a 2.650 m.

El material parental se compone de cenizas volcánicas y aluviones mixtos (medios, finos y muy finos). Los suelos son muy superficiales y superficiales, de texturas medias, moderadamente finas, finas y muy finas, pobremete drenados, de reacción fuertemente ácida, capacidad de intercambio catiónica alta, saturación de bases media y fertilidad media-alta.

Las limitaciones de uso y manejo para este tipo de suelos son la poca profundidad efectiva, los problemas de encharcamiento e inundaciones y drenaje pobre.

El uso actual de estas tierras son la ganadería doble propósito, con pasto kikuyo (Pennisetum clandestinum Hochst. ex Chiov), carretón blanco (Trifolium repens), ray grass (Lolium sp.) y pasto azul (Holcus lanatus); sin embargo, quedan vestigios de vegetación natural como aliso (Alnus jorullensis), cabuya (Furcraea sp.), helecho (Polypodium lanceolatum), retamo (Spartium junceum), roble (Quercus humboldti), sauce (Salix babilónica) y trompeta (Bocconia frutescens), y especies introducidas como eucalipto común (Eucaliptus globulus Labill) y el pino patula (Pinus patula Schlecht et Cham).

Estos suelos requieren de prácticas de manejo relacionadas con:
- Construir canales de desvío para cambiar la dirección de los escurrimientos superficiales que se encuentran en varias zonas y encauzarlos hacia salidas naturales o artificiales bien protegidas.
- Establecer un sistema de drenaje superficial.
- Construir diques en las orillas de los ríos, para control de inundaciones.
- Fraccionar la fertilización para aumentar la eficiencia, además, los productos como la cal neutralizan los contenidos de aluminio y la disponibilidad de nutrientes.
- Siembra de especies tolerantes a los excesos de humedad, así como el aumento en las alturas de las camas, para que las calles actúen como canales de drenaje.
- Incorporar material vegetal para el aumento en el contenido de materia orgánica, ciclaje de nutrientes y mejorar la estabilidad estructural del suelo.

Las tierras de esta unidad de manejo tienen aptitud para:
- La producción de ganado lechero, manteniendo poca carga de animales por hectárea con el fin de evitar la compactación del suelo y la erosión por pisoteo. Se puede pastorear con especies como kikuyo (Pennisetum clandestinum Hochst. ex Chiov), ray grass (Lolium sp.) y pasto azul (Holcus lanatus L.).
1.1.3.2.14 Grupo de manejo 7s1

Estas unidades se localizan a alturas que varían entre 2.550 y 2.620 msnm., con una temperatura media anual de 13,4°C y una precipitación promedio de 906 milímetros anuales.

Los suelos se formaron a partir de materiales coluvio-aluviales; son superficiales afectados parcialmente por erosión en grado moderado, bien drenados, texturas moderadamente finas y finas a moderadamente gruesas y medias, reacción ligeramente ácida, capacidad cationica de cambio alta, bases totales bajas, saturación de bases baja en el primer horizonte y media en profundidad, calcio medio, magnesio altos, relación Ca/Mg en desequilibrio, bajo contenido de fósforo, potasio medio, sodio bajo, carbón orgánico alto y nivel de fertilidad muy alto.

Estas tierras se encuentran en pasto kikuyo para ganadería extensiva.

Estos suelos requieren de prácticas de manejo tales como:
- Mantener las pasturas kikuyo, raygras, y coberturas vivas falsa poa, encenillo, pasto oloroso, salvio.
- Restaurar o conservar las especies nativas como laurel de cera, arrayan, zarza, aliso, sauco entre otros.
- Aplicar humus y abonos verdes como el girasol, nabo forrajero, avena caldas.

Las tierras de esta unidad de manejo tienen aptitud para:
- Mantener la ganadería con el menor número de cabezas por sitio.
- Establecimiento de especies nativas como laurel de cera, arrayan, zarza, aliso, encenillo.
- Manejo combinado agrosilvopastoral con especies de pastos kikuyo y reygras, falsa poa y aliso.
- Siembra de especies herbáceas preferiblemente nativas como kikuyo, falsa poa, tréboles rojo y blanco.
- Bosque de protección con especies nativas como aliso, encenillo, salvio.

En el estudio del IGAC (2012), está subclase se utilizó para delimitar las zonas que actualmente se encuentran construidas o urbanizadas.

A continuación, en la Figura 14 se referencia la capacidad agrológica establecida en el documento de la fase de diagnóstico del Ajuste del Plan de Ordenación y Manejo de la cuenca del Río Bogotá (Consorcio Huitaca, 2017).
De acuerdo con este documento, en el municipio se presentan los siguientes grupos de manejo:

1.1.3.2.15 Subclase 2c – 3

Clima frío seco, relieve plano a ligeramente inclinado. Suelos moderadamente profundos a superficiales bien a imperfectamente drenados, clase textural fina, ligeramente ácidos a neutros, horizontes endurecidos, translocación de materia orgánica, fertilidad moderada ligeramente erosionados. Las principales limitantes son las temporadas secas, susceptibilidad a la erosión, bajas temperaturas. Normalmente son utilizadas en agricultura intensiva de cereales, ganadería intensiva con pastos naturales y manejados. Son tierras aptas para cultivos transitorios Intensivos (CTI) y cultivos transitorios semi-intensivos (CTS).

1.1.3.2.16 Subclase 2cs – 1

Clima frío seco, relieve plano a ligeramente inclinado. Suelos superficiales, bien drenados, texturas finas, medianas translocación de arcillas y materia orgánica, fertilidad moderada, clase textural fina, ligeramente ácidos a neutros, horizontes endurecidos, translocación de materia orgánica, fertilidad moderada ligeramente erosionados. Las principales limitantes son las temporadas secas, horizontes endurecidos, susceptibilidad a la erosión, bajas temperaturas, drenaje imperfecto. Normalmente son utilizadas en agricultura intensiva de cereales, ganadería intensiva con pastos naturales y manejados. Son tierras aptas para cultivos transitorios Intensivos (CTI) y cultivos transitorios semi-intensivos (CTS).

1.1.3.2.17 Subclase 2sh1

Climas fríos húmedos, fríos secos, cálidos secos relieve plano. Suelos superficiales limitados por el nivel freático, imperfectamente a mal drenados, texturas finas, medianas y moderadamente gruesas; reacción ligeramente ácida a neutra, media a alta capacidad de intercambio cátionico y fertilidad baja, ocupa sectores de vegas con relieve plano 0-3% erosión leve, patas de vaca, ocasionalmente son inundables. Las principales limitantes de estas tierras son el nivel freático cerca de la superficie, mal drenaje, susceptibilidad a inundaciones, bajo contenido de calcio, magnesio y fósforo, pedregosidad, inundaciones ocasionales. La mayor parte de la zona está dedicada a la ganadería intensiva. Son tierras aptas para ganadería intensiva, (PIN)

1.1.3.2.18 Subclase 3cs – 3

Clima frío seco, relieve moderadamente inclinado, suelos moderadamente profundos, erosión moderada, bien drenados, clase textural medial, translocación de arcillas y materia orgánica, fertilidad moderada, clase textural fina, ligeramente ácidos a neutros, horizontes endurecidos, translocación de materia orgánica, fertilidad moderada. Las principales limitantes son las temporadas secas, horizontes endurecidos, susceptibilidad a la erosión, bajas temperaturas, drenaje imperfecto. Normalmente son utilizadas en agricultura intensiva de cereales, ganadería intensiva con pastos naturales y manejados. Son tierras aptas para Pastoreo Intensivo (PIN) y extensivo (PEX).

1.1.3.2.19 Subclase 4spe - 1

Clima Frío Húmedo, muy frío Húmedo relieve moderadamente quebrado. Suelos profundos y moderadamente profundos, cenizas volcánicas erosión moderada, bien drenados, clase textural medial, fuertemente ácidos, saturación de aluminio alta, fertilidad baja a moderada. Bajas temperaturas, fuerte acidez, derivada de la materia orgánica y del aluminio alta retención de fosfatos, alta saturación de aluminio, bajo contenido de fósforo, baja fertilidad de algunos suelos, erosión moderada
1.1.3.2.20 Subclase 6cs – 3

Clima frío Húmedo, relieve quebrado (12-25% y 25-50%), suelos profundos y moderadamente profundos, cenizas volcánicas erosión moderada, bien drenados, clase textural media, fuertemente ácidos, saturación de aluminio alta, fertilidad baja a moderada, alta materia orgánica, alta retención de humedad, friables.

Las tierras están utilizadas en ganadería extensiva con pastos naturales. La capacidad para agricultura es baja y en las condiciones actuales, con el nivel tecnológico que se utiliza son aptas para plantaciones forestales protectoras, productoras, en sistemas forestales productores (FPD) y sistemas forestales protectores (FPR), agroforestales. Para el uso, manejo, protección y conservación del medio ambiente se recomienda implementar las siguientes prácticas: reforestar con especies nativas o exóticas, construir acequias de laderas y establecer barreras vivas. Las principales limitantes son las pendientes, acidez, derivada de la materia orgánica y del aluminio alta retención de fosfatos, alta saturación de aluminio, bajo contenido de fósforo, baja fertilidad de algunos suelos, erosión moderada. Son tierras aptas para Agroforestales (AGS), reforestación productora (FPD).

1.1.3.2.21 Subclase 6cs – 4

Clima frío seco, relieve quebrado, pendiente entre 12-25 y 25-50%, suelos superficiales, bien drenados, erosión moderada, fertilidad baja, horizontes endurecidos, translocación de arcillas y materia orgánica, ligeramente ácidos a neutros, horizontes endurecidos, fertilidad moderada. Las principales limitantes son las altas pendientes deficientes precipitaciones, erosión moderada, alta susceptibilidad a la erosión alta saturación de aluminio, y fertilidad baja.

Las tierras están utilizadas en ganadería extensiva con pastos naturales. La capacidad para agricultura es baja, las áreas erosionadas se deben aislar y suspender toda actividad agropecuaria y desarrollar programas de recuperación de estas zonas, favorecer la regeneración natural de la vegetación, evitar quemas y tala de bosques. Son tierras aptas para cultivos agroforestales (AGS) y forestación productora y protectora (FPD y FPR).

1.1.3.2.22 Subclase 7csp – 3

Clima frío seco, relieve quebrado a escarpado (25-50%), suelos superficiales, bien drenados, erosión moderada, ligeramente ácidos, horizontes endurecidos, translocación de arcillas y materia orgánica, ligeramente ácidos a neutros, horizontes endurecidos, fertilidad baja.

Las principales limitantes son las altas pendientes quebradas a escarpadas deficientes precipitaciones, erosión moderada, alta susceptibilidad a la erosión alta saturación de aluminio, y fertilidad baja. Para el uso y manejo más adecuado de estas tierras, se recomienda reforestar con especies nativas o exóticas adaptadas al medio, mantenimiento de la cobertura vegetal propia de estas condiciones ecológicas, reforestación protectora, eliminar las actividades agropecuarias, evitar tala y quemadas de bosques. Son tierras aptas para forestación productora y protectora (FPD - FPR).

1.1.3.2.23 Subclase 7sh – 1

Climas fríos templados y cálidos secos y húmedos, vallecollos, nivel freático alto, inundables, susceptibles a crecidas y avalanchas, ácidos, pedregosos. Las principales limitantes son el nivel freático alto, inundabilidad, erosión por movimientos en masa, deslizamientos. Esta subclase de tierras tiene limitaciones severas debido a movimientos en masa, inundabilidad, y fertilidad baja.
Debido a las limitaciones de estas tierras, son aptas solamente para sistemas forestales protectores (FPR) y conservación de la vegetación natural, reforestación donde la vegetación ha sido talada, y vida silvestre. Para el uso y manejo más adecuado de estas tierras, se recomienda reforestar con especies nativas o exóticas adaptadas al medio, mantenimiento de la cobertura vegetal propia de estas condiciones ecológicas, reforestación protectora, eliminar las actividades agropecuarias, evitar tala y quemar de bosques. Son tierras aptas para forestación y protectora (FPR).

1.1.3.2.24 Subclase 7spe - 1

Clima frío húmedo, muy frío húmedo, relieve quebrado a escarpado, suelos superficials excesivamente drenados, erosión moderada, cenizas volcánicas texturas finas a medias, muy fuerte a fuertemente ácidos, alta saturación de aluminio y fertilidad baja.

Las principales limitantes son las pendientes quebradas a escarpadas, bajas temperaturas, erosión moderada, alta susceptibilidad a la erosión fuerte acidez, alta saturación de aluminio y fertilidad baja. Esta subclase de tierras tiene limitaciones severas debido a pendientes moderadamente escarpadas, erosión moderada, alta susceptibilidad a la erosión y a los movimientos en masa y fertilidad baja. Debido a las limitaciones de estas tierras, son aptas solamente para sistemas forestales protectores (FDR) y sistemas agroforestales (AGS) conservación de la vegetación natural, reforestación donde la vegetación ha sido talada, y vida silvestre.

1.1.3.2.25 Subclase 7spe – 3

Clima muy frío húmedo a frío seco, relieve quebrado a escarpado, suelos superficials excesivamente drenados, erosión moderada, cenizas volcánicas texturas finas a medias, muy fuerte a fuertemente ácidos, alta saturación de aluminio y fertilidad baja.

Las tierras están utilizadas en ganadería extensiva con pastos naturales. La capacidad para agricultura es baja sin embargo, para el uso, manejo, protección y conservación del medio ambiente se recomienda implementar las siguientes prácticas: reforestar con especies nativas o exóticas, construir acequias de laderas y establecer barreras vivas. Las áreas erosionadas se deben aislar y suspender toda actividad agropecuaria y desarrollar programas de recuperación de estas zonas, favorecer la regeneración natural de la vegetación, evitar quemar y tala de bosques.

Las principales limitaciones son las pendientes quebradas a escarpadas, bajas temperaturas, erosión moderada, alta susceptibilidad a la erosión fuerte acidez, alta saturación de aluminio y fertilidad baja.

Son tierras aptas para protectora (FPR) y sistemas Agroforestales (AGS).

1.1.3.2.26 Subclase 8csp – 1

Clima extremadamente frío húmedo a frío seco, relieve escarpado, pendientes 50-75% superficiales excesivamente drenados, erosión moderada a severa, cenizas volcánicas texturas finas a medias, muy fuerte a fuertemente ácidos, alta saturación de aluminio y fertilidad baja.

Las principales limitaciones son climas extremos, pendientes escarpadas erosión moderada, alta susceptibilidad a la erosión fuerte acidez, alta saturación de aluminio y fertilidad baja. Esta subclase tiene una o más limitaciones derivadas del clima de páramo y fertilidad baja. La mayor parte de las tierras de esta subclase se encuentran en vegetación natural.

Debido a las limitaciones mencionadas, estas tierras no son aptas para explotaciones agropecuarias o forestales, por estas razones deben dedicarse exclusivamente a la protección y
conservación y o para la recuperación de la naturaleza (CRE) Se recomienda prohibir todas las actividades agropecuarias, evitar la tala y quema de bosques, permitir la regeneración de la vegetación, reforestación con especies adaptadas al medio ecológico, conservación de los suelos, la cobertura vegetal, protección y conservación de la flora y fauna silvestre.

1.1.3.2.27 Subclase 8s – 1

La principal limitante es la roca dura y las pendientes altas Afloramientos rocosos. Debido a las limitaciones mencionadas, estas tierras deben no son aptas para explotaciones agropecuarias o forestales, por estas razones deben dedicarse exclusivamente a la protección y conservación y o para la recuperación de la naturaleza (CRE).

1.1.3.3 Vocación de uso

La vocación del suelo para el municipio de Chía se determinó a partir de la capacidad agrológica (Figura 15).

Para la determinación de dicha vocación se analiza y evalúa una serie de características biofísicas estables en el tiempo y en el espacio, que influyen en la selección y desempeño de los usos agropecuarios y forestales, principalmente, con requerimientos implícitos de protección y conservación de los recursos naturales. El objetivo principal de la vocación es la determinación del uso más apropiado que puede soportar el suelo, propendiendo por una producción sostenible y sin deterioro de los recursos naturales (IGAC, 2012).

Figura 15. Vocación de uso

Fuente: Elaborado con información base de Consorcio Huitaca (2017)

Para Chía el estudio determinó las siguientes vocaciones de uso de las tierras, que se refiere a la clase mayor de uso que una unidad de tierra está en capacidad natural de soportar con características de sostenibilidad, evaluada sobre una base biofísica (IGAC, 2012).
1.1.3.3.1 **Vocación agroforestal**

Las tierras con vocación agroforestal son aquellas que por sus características biofísicas (clima, relieve, material parenteral, suelos, erosión, etc.) no permiten la utilización exclusiva de usos agrícolas o ganaderos. Estas tierras deben ser utilizadas bajo sistemas combinados, donde, deliberadamente, se mezclen actividades agrícolas, ganaderas y forestales, en arreglos tanto espaciales como temporales; algunas de las limitantes de estas tierras son el exceso y/o ausencia de lluvias, las fuertes pendientes, la afectación por erosión en diferentes grados, presencia de zorales, inundaciones, presencia de sales y la presencia de altos contenidos de aluminio. Los usos principales que corresponden a esta vocación son el agrosilvícola (AGS), agrosilvopastoril (ASP) y silvopastoril (SPA). (IGAC, 2012)

Para el municipio de Chía, estos suelos se encuentran principalmente en los cerros orientales, en las veredas Fusca y Yerbabuena.

1.1.3.3.2 **Vocación agrícola**

Son aquellas que, por sus características de suelos, permiten el establecimiento de sistemas de producción agrícola, con plantas cultivadas de diferentes ciclos de vida y productos. Estas tierras presentan la mayor capacidad para soportar actividades agrícolas intensivas y semintensivas o cualquier tipo de uso que quiera implementarse en ella, como la reforestación comercial con fines industriales, entre otras; los usos principales establecidos en la vocación agrícola corresponden a los cultivos transitorios y permanentes de tipo intensivo y semintensivo localizados en diferentes pisos térmicos desde el cálido hasta el frío (0 hasta 3.000 m.s.n.m.) y temperaturas superiores a los 12°C. (IGAC, 2012)

En Chía, los suelos con esta vocación se localizan principalmente en las veredas Fagua, Tíquiza, Fonquetá, Cerca de Piedra, Bojacá y La Balsa.

1.1.3.3.3 **Vocación conservación**

Las tierras destinadas a la conservación de suelos comprenden todas aquellas que, debido a sus características biofísicas e importancia ecológica, tienen como función principal la protección de los recursos naturales con el propósito de garantizar el bienestar social, económico y cultural de la humanidad en el corto, mediano y largo plazo; permiten intervención antrópica limitada y dirigida principalmente a actividades de investigación, ecoturismo, protección de flora y fauna silvestre y recuperación para la protección.

Para estas tierras la recomendación general es la de conservarlas en su estado natural, en el caso de no haber sido intervenidas, o la de inducir o permitir su recuperación natural y rehabilitación ecológica, cuando ya han sido afectadas con usos que las han degradado.

En esta categoría se incluyen los suelos de clase agrológica 8, presentes en los cerros orientales del municipio, así como los cuerpos de agua.

1.1.3.3.4 **Vocación forestal**

Hace referencia para aquellas tierras que, por sus condiciones de clima, pendiente, suelos y riesgos erosivos, deben aprovecharse con usos de protección o producción forestal, sea con especies nativas o exóticas; las tierras no admiten ningún tipo de uso agrícola o pecuario, excepto cuando se definan para uso forestal de producción, el cual es compatible con usos agroforestales; de lo contrario debe predominar el propósito de protección de los recursos naturales.

En el municipio se presenta en la clase agrológica 7, en los cerros orientales y occidentales.
1.1.3.3.5 Vocación ganadera

Son aquellas donde el uso hace referencia a la explotación económica que realiza el hombre sobre especies animales de pastoreo, sea de tipo vacuno, lanar, caballar, entre otras, y se caracterizan por presentar limitaciones moderadas, especialmente para el desarrollo de una agricultura intensiva y semi-intensiva; la escasa e irregular distribución de las lluvias, el relieve plano cóncavo, así como la dificultad presente en los suelos para la profundización de las raíces y la baja fertilidad, son algunos de los aspectos más importantes que determinan la vocación ganadera en el país. Otras características importantes son la presencia de pedregosidad en superficie o en el suelo y las inundaciones, las cuales limitan el establecimiento de sistemas agrícolas permanentes, dados los riesgos de pérdidas económicas y de infraestructura para la producción, por lo cual la ganadería bien manejada es la mejor opción de uso para estas tierras.

En el municipio se presenta en la zona plana, sin embargo, debe considerarse que en estas zonas también se da la vocación agrícola con limitaciones.

1.1.3.4 Coberturas

La descripción de coberturas en el municipio se realizó con la metodología CORINE Land Cover Adaptada para Colombia (IDEAM, 2010). La metodología se aplicó hasta el nivel 3 de clasificación, delimitando las clasificaciones para el municipio presentadas en la Tabla 5.

Tabla 5. Datos de coberturas con metodología CORINE Land Cover

<table>
<thead>
<tr>
<th>Nivel 1 Cobertura</th>
<th>Nivel 2 Cobertura</th>
<th>Nivel 3 Cobertura</th>
<th>Total área (ha)</th>
<th>% de área</th>
</tr>
</thead>
<tbody>
<tr>
<td>Territorios Artificializados</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zonas de Extracción Minera y Escombreras</td>
<td>Zonas de Extracción Minera</td>
<td>1.3.1</td>
<td>77.20</td>
<td>0.96</td>
</tr>
<tr>
<td>Zonas industriales o comerciales y redes de comuni</td>
<td>Obras Hidráulicas</td>
<td>1.2.5</td>
<td>13.02</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>Red vial, ferroviaria y terrenos asociados</td>
<td>1.2.2</td>
<td>119.34</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>Zonas industriales o comerciales</td>
<td>1.2.1</td>
<td>226.24</td>
<td>2.81</td>
</tr>
<tr>
<td>Zonas urbanizadas</td>
<td>Tejido urbano continuo</td>
<td>1.1.1</td>
<td>1135.70</td>
<td>14.12</td>
</tr>
<tr>
<td></td>
<td>Tejido urbano discontinuo</td>
<td>1.1.2</td>
<td>1847.94</td>
<td>22.97</td>
</tr>
<tr>
<td>Zonas Verdes Artificializadas, no agrícolas</td>
<td>Instalaciones Recreativas</td>
<td>1.4.2</td>
<td>184.32</td>
<td>2.29</td>
</tr>
<tr>
<td>Total Territorios Artificializados</td>
<td></td>
<td></td>
<td>3603.76</td>
<td>44.80</td>
</tr>
<tr>
<td>Territorios Agrícolas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Áreas agrícolas heterogéneas</td>
<td>Mosaico Cultivos y Espacios Naturales</td>
<td>2.4.5</td>
<td>0.37</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Mosaico de cultivos</td>
<td>2.4.1</td>
<td>618.33</td>
<td>7.69</td>
</tr>
<tr>
<td></td>
<td>Mosaico de cultivos, pastos y espacios naturales</td>
<td>2.4.3</td>
<td>963.83</td>
<td>11.98</td>
</tr>
<tr>
<td></td>
<td>Mosaico de pastos con espacios naturales</td>
<td>2.4.4</td>
<td>251.22</td>
<td>3.12</td>
</tr>
<tr>
<td></td>
<td>Mosaico de pastos y cultivos</td>
<td>2.4.2</td>
<td>7.95</td>
<td>0.10</td>
</tr>
<tr>
<td>Cultivos permanentes</td>
<td>Cultivos confinados</td>
<td>2.2.5</td>
<td>295.50</td>
<td>3.67</td>
</tr>
<tr>
<td>Cultivos Transitorios</td>
<td>Hortalizas</td>
<td>2.1.4</td>
<td>1.14</td>
<td>0.01</td>
</tr>
<tr>
<td>Pastos</td>
<td>Pastos Enmalezados</td>
<td>2.3.3</td>
<td>2.09</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Pastos limpios</td>
<td>2.3.1</td>
<td>419.51</td>
<td>5.21</td>
</tr>
<tr>
<td>Total Territorios Agrícolas</td>
<td></td>
<td></td>
<td>2559.93</td>
<td>31.82</td>
</tr>
<tr>
<td>Bosques y Áreas Seminaturales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Áreas abiertas, sin o con poca vegetación</td>
<td>Tierras Desnudas y Degradadas</td>
<td>3.3.3</td>
<td>66.90</td>
<td>0.83</td>
</tr>
<tr>
<td>Áreas con vegetación herbácea y/o arbustiva</td>
<td>Arbustal</td>
<td>3.2.2</td>
<td>257.34</td>
<td>3.20</td>
</tr>
<tr>
<td></td>
<td>Bosque denso</td>
<td>3.1.1</td>
<td>0.20</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Herbazal</td>
<td>3.2.1</td>
<td>545.73</td>
<td>6.78</td>
</tr>
<tr>
<td></td>
<td>Vegetación secundaria o en transición</td>
<td>3.2.3</td>
<td>247.95</td>
<td>3.08</td>
</tr>
<tr>
<td>Bosques</td>
<td>Bosque Abierto</td>
<td>3.1.2</td>
<td>114.82</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>Bosque denso</td>
<td>3.1.1</td>
<td>570.71</td>
<td>7.09</td>
</tr>
<tr>
<td>Total Bosques y Áreas Seminaturales</td>
<td></td>
<td></td>
<td>1803.64</td>
<td>22.42</td>
</tr>
</tbody>
</table>
Nivel 1 Cobertura

<table>
<thead>
<tr>
<th>Nivel 2 Cobertura</th>
<th>Nivel 3 Cobertura</th>
<th>Total área (ha)</th>
<th>% de área</th>
</tr>
</thead>
<tbody>
<tr>
<td>Áreas Húmedas</td>
<td>4.1.1 Zonas pantanosas</td>
<td>9.78</td>
<td>0.12</td>
</tr>
<tr>
<td>Total Áreas Húmedas</td>
<td></td>
<td>9.78</td>
<td>0.12</td>
</tr>
<tr>
<td>Superficies de Agua</td>
<td>5.1.4 Cuerpos de Agua Artificiales</td>
<td>13.96</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>5.1.2 Lagunas, Lagos y Cienagas Naturales</td>
<td>0.52</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>5.1.1 Ríos (50 m)</td>
<td>53.27</td>
<td>0.66</td>
</tr>
<tr>
<td>Total Superficies de Agua</td>
<td></td>
<td>67.75</td>
<td>0.84</td>
</tr>
<tr>
<td>Total general</td>
<td></td>
<td>8044.86</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia (2020)

1.1.3.4.1 Territorios Artificializados

Comprende las áreas de las ciudades y las poblaciones y, aquellas áreas periféricas que están siendo incorporadas a las zonas urbanas mediante un proceso gradual de urbanización o de cambio del uso del suelo hacia fines comerciales, industriales, de servicios y recreativos.

Figura 16. Coberturas - Territorios Artificializados

Fuente: DOTP (2020)
1.1 ZONAS URBANIZADAS: Las zonas urbanizadas incluyen los territorios cubiertos por infraestructura urbana y todos aquellos espacios verdes y redes de comunicación asociados con ellas, que configuran un tejido urbano. Presenta dos unidades:

1.1.1. Tejido urbano continuo: Son espacios conformados por edificaciones y los espacios adyacentes a la infraestructura edificada. Las edificaciones, vías y superficies cubiertas artificialmente cubren más de 80% de la superficie del terreno. La vegetación y el suelo desnudo representan una baja proporción del área del tejido urbano. La superficie de la unidad debe ser superior a cinco hectáreas.

Para el municipio de Chía está clasificación se aplica a la zona urbana y zonas adyacentes a la zona urbana que tienen un alto grado de consolidación.

1.1.2 Tejido urbano discontinuo: Son espacios conformados por edificaciones y zonas verdes. Las edificaciones, vías e infraestructura construida cubren la superficie del terreno de manera dispersa y discontinua, ya que el resto del área está cubierta por vegetación. Esta unidad puede presentar dificultad para su delimitación cuando otras coberturas de tipo natural y seminatural se mezclan con áreas clasificadas como zonas urbanas.

Esta clasificación se aplica en Chía a las áreas de vivienda en condominio que se localizan de manera dispersa en la zona rural, así como a los asentamientos humanos.

1.2 ZONAS INDUSTRIALES O COMERCIALES Y REDES DE COMUNICACIÓN: Comprende los territorios cubiertos por infraestructura de uso exclusivamente comercial, industrial, de servicios y comunicaciones. Se incluyen tanto las instalaciones como las redes de comunicaciones que permiten el desarrollo de los procesos específicos de cada actividad.

1.2.1 Zonas industriales o comerciales: Son las áreas cubiertas por infraestructura artificial (terrenos cimentados, alquitranados, asfaltados o estabilizados), sin presencia de áreas verdes dominantes, las cuales se utilizan también para actividades comerciales o industriales.

En el municipio está delimitación corresponde a las industrias, centros comerciales, universidades.

1.2.2 Red vial, ferroviaria y terrenos asociados: Son espacios artificializados con infraestructuras de comunicaciones como carreteras, autopistas y vías férreas; se incluye la infraestructura conexa y las instalaciones asociadas tales como: estaciones de servicios, andenes, terraplenes y áreas verdes. La superficie debe ser mayor a cinco hectáreas y el ancho de la vía debe ser superior a 50 metros.

Se delimitan en esta categoría las vías férreas y las vías principales como la Autopista Norte, la Carrera Séptima y la Vía a Cajicá.

1.2.5 Obras hidráulicas: Superficies que corresponden a construcciones consolidadas de carácter permanente, destinadas a instalaciones hidráulicas, y aquellas de pequeña magnitud, generalmente asociadas con infraestructura urbana, tales como acueductos, bocatomas, plantas de tratamiento y pequeñas presas.

Para el municipio se clasifican en esta categoría las zonas donde se encuentran la PTAR I y PTAR II.

1.3 ZONAS DE EXTRACCIÓN MINERA Y ESCOMBRERAS: Comprende las áreas donde se extraen o acumulan materiales asociados con actividades mineras, de construcción, producción industrial y vertimiento de residuos de diferente origen.
1.3.1 Zonas de extracción minera: Son áreas dedicadas a la extracción de materiales minerales a cielo abierto.

En Chía se encuentran 3 zonas de extracción de materiales de construcción, que se encuentran en etapa de recuperación y revegetalización.

1.4 ZONAS VERDES ARTIFICIALIZADAS, NO AGRÍCOLAS: Comprende las zonas verdes localizadas en las áreas urbanas, sobre las cuales se desarrollan actividades comerciales, recreacionales, de conservación y amortiguación, donde los diferentes usos del suelo no requieren de infraestructura construida apreciable.

En general, estas zonas verdes son áreas resultantes de procesos de planificación urbana o áreas que por los procesos de urbanización quedaron embebidas en el perímetro de la ciudad.

1.4.2 Instalaciones recreativas: Son los terrenos dedicados a las actividades de camping, deporte, parques de atracción, golf, hipódromos y otras actividades de recreación y esparcimiento, incluyendo los parques habilitados para esparcimiento, no incluidos dentro del tejido urbano.

Se delimitan en esta categoría los campos de golf del municipio y otros sitios recreativos por fuera de la zona urbana.

1.1.3.4.2 Territorios Agrícolas

Son los terrenos dedicados principalmente a la producción de alimentos, fibras y otras materias primas industriales, ya sea que se encuentren con cultivos, con pastos, en rotación y en descanso o barbecho. Comprende las áreas dedicadas a cultivos permanentes, transitorios, áreas de pastos y las zonas agrícolas heterogéneas, en las cuales también se pueden dar usos pecuarios además de los agrícolas.

Figura 17. Coberturas - Territorios Agrícolas

Fuente: DOTP (2020)
2. TERRITORIOS AGRÍCOLAS

2.1. Cultivos transitorios

2.1.4. Hortalizas

2.2. Cultivos permanentes

2.2.5. Cultivos confinados

2.3. Pastos

2.3.1. Pastos limpios

2.3.3. Pastos enmalezados

2.4. Áreas agrícolas heterogéneas

2.4.1. Mosaico de cultivos

2.4.2. Mosaico de pastos y cultivos

2.4.3. Mosaico de cultivos, pastos y espacios naturales

2.4.4. Mosaico de pastos con espacios naturales

2.4.5. Mosaico de cultivos y espacios naturales

2.1. CULTIVOS TRANSITORIOS: Comprende las áreas ocupadas con cultivos cuyo ciclo vegetativo es menor a un año, llegando incluso a ser de sólo unos pocos meses, como por ejemplo los cereales (maíz, trigo, cebada y arroz), los tubérculos (papa y yuca), las oleaginosas (el ajonjoli y el algodón), la mayor parte de las hortalizas y algunas especies de flores a cielo abierto. Tienen como característica fundamental, que después de la cosecha es necesario volver a sembrar o plantar para seguir produciendo.

2.1.4. Hortalizas: Cobertura terrestre de manejo intensivo caracterizada por ser un conjunto de plantas herbáceas, cultivadas generalmente en huertas, que se consumen como alimento humano. Se hace en pequeñas extensiones, dándole el máximo de cuidados y manteniendo el suelo constantemente ocupado.

En el municipio se identificó un polígono de hortalizas, considerando las coberturas disponibles según la ortofotografía.

2.2. CULTIVOS PERMANENTES: Comprende los territorios dedicados a cultivos cuyo ciclo vegetativo es mayor a un año, produciendo varias cosechas sin necesidad de volverse a plantar; se incluyen en esta categoría los cultivos de herbáceas como caña de azúcar, caña panelera, plátano y banano; los cultivos arbustivos como café y cacao; y los cultivos arbóreos como palma africana y árboles frutales.

2.2.5. Cultivos confinados: Comprenden las tierras ocupadas por cultivos bajo infraestructuras de invernaderos, principalmente dedicadas al cultivo de flores, frutales y hortalizas. Incluye toda aquella estructura cerrada cubierta por materiales transparentes, dentro de la cual es posible obtener unas condiciones artificiales de microclima, y con ello cultivar plantas en condiciones óptimas.

En el municipio de Chía los cultivos confinados corresponden principalmente a cultivos de flores.

2.3. PASTOS: Comprende las tierras cubiertas con hierba densa de composición florística dominada principalmente por la familia Poaceae, dedicadas a pastoreo permanente por un periodo de dos o más años. Algunas de las categorías definidas pueden presentar anegamientos temporales o permanentes cuando están ubicadas en zonas bajas o en depresiones del terreno. Una característica de esta cobertura es que en un alto porcentaje su presencia se debe a la acción antrópica, referida especialmente a su plantación, con la introducción de especies no nativas principalmente, y en el manejo posterior que se le hace.

2.3.1. Pastos limpios: Esta cobertura comprende las tierras ocupadas por pastos limpios con un porcentaje de cubrimiento mayor a 70%; la realización de prácticas de manejo (limpieza, encañalamiento y/o fertilización, etc.) y el nivel tecnológico utilizados impiden la presencia o el desarrollo de otras coberturas.
2.3.3 Pastos enmalezados: Son las coberturas representadas por tierras con pastos y malezas conformando asociaciones de vegetación secundaria, debido principalmente a la realización de escasas prácticas de manejo o la ocurrencia de procesos de abandono. En general, la altura de la vegetación secundaria es menor a 1,5 m.

2.4 ÁREAS AGRÍCOLAS HETEROGÉNEAS: Son unidades que reúnen dos o más clases de coberturas agrícolas y naturales, dispuestas en un patrón intrincado de mosaicos geométricos que hace difícil su separación en coberturas individuales; los arreglos geométricos están relacionados con el tamaño reducido de los predios, las condiciones locales de los suelos, las prácticas de manejo utilizadas y las formas locales de tenencia de la tierra.

2.4.1 Mosaico de cultivos: Incluye las tierras ocupadas con cultivos anuales, transitorios o permanentes, en los cuales el tamaño de las parcelas es muy pequeño (inferior a 25 ha) y el patrón de distribución de los lotes es demasiado intrincado para representarlos cartográficamente de manera individual.

2.4.2 Mosaico de pastos y cultivos: Comprende las tierras ocupadas por pastos y cultivos, en los cuales el tamaño de las parcelas es muy pequeño (inferior a 25 ha) y el patrón de distribución de los lotes es demasiado intrincado para representarlos cartográficamente de manera individual.

2.4.3 Mosaico de cultivos, pastos y espacios naturales: Comprende las superficies del territorio ocupadas principalmente por coberturas de cultivos y pastos en combinación con espacios naturales. En esta unidad, el patrón de distribución de las coberturas no puede ser representado individualmente, como parcelas con tamaño mayor a 25 hectáreas. Las áreas de cultivos y pastos ocupan entre 30% y 70% de la superficie total de la unidad.

Los espacios naturales están conformados por las áreas ocupadas por relictos de bosque natural, arbustales, bosque de galería o riparios, vegetación secundaria o en transición, pantanos y otras áreas no intervenidas o poco transformadas, que debido a limitaciones de uso por sus características biofísicas permanecen en estado natural o casi natural.

2.4.4 Mosaico de pastos con espacios naturales: Constituída por las superficies ocupadas principalmente por coberturas de pastos en combinación con espacios naturales. En esta unidad, el patrón de distribución de las zonas de pastos y de espacios naturales no puede ser representado individualmente y las parcelas de pastos presentan un área menor a 25 hectáreas. Las coberturas de pastos representan entre 30% y 70% de la superficie total del mosaico. Los espacios naturales están conformados por las áreas ocupadas por relictos de bosque natural, arbustales, bosque de galería o ripario, pantanos y otras áreas no intervenidas o poco transformadas y que debido a limitaciones de uso por sus características biofísicas permanecen en estado natural o casi natural.

2.4.5 Mosaico de cultivos y espacios naturales: Corresponde a las superficies ocupadas principalmente por cultivos en combinación con espacios naturales, donde el tamaño de las parcelas es muy pequeño y el patrón de distribución de los lotes es demasiado intrincado para representarlos cartográficamente de manera individual. En esta unidad, los espacios naturales se presentan como pequeños parches o relictos que se distribuyen en forma irregular y heterogénea, a veces entremezclada con las áreas de cultivos, dificultando su diferenciación. Las áreas de cultivos representan entre 30% y 70% de la superficie total de la unidad. Los parches y residuos de espacios naturales están conformados por aquellas áreas cubiertas por relictos de bosque, arbustales, bosque de galería y/o ripario, vegetación secundaria o en transición, zonas pantanosas u otras áreas no intervenidas o poco transformadas que permanecen en estado natural o casi natural.
1.1.3.4.3 Bosques y áreas seminaturales

Comprende un grupo de coberturas vegetales de tipo boscoso, arbustivo y herbáceo, desarrolladas sobre diferentes sustratos y pisos altitudinales que son el resultado de procesos climáticos; también por aquellos territorios constituidos por suelos desnudos y afloramientos rocosos y arenosos, resultantes de la ocurrencia de procesos naturales o inducidos de degradación.

3. BOSQUES Y ÁREAS SEMINATURALES

3.1. Bosques

3.1.1. Bosque denso

3.1.2. Bosque abierto

3.2. Áreas con vegetación herbácea y/o arbustiva

3.2.1. Herbazal

3.2.2. Arbustal

3.2.3 Vegetación secundaria o en transición

3.3. Áreas abiertas, sin o con poca vegetación

3.3.3. Tierras desnudas y degradadas

Figura 18. Coberturas - Bosques y áreas seminaturales

Fuente: DOTP (2020)

3.1. BOSQUES: Comprende las áreas naturales o seminaturales, constituidas principalmente por elementos arbóreos de especies nativas o exóticas.

3.1.1. Bosque denso: Cobertura constituida por una comunidad vegetal dominada por elementos típicamente arbóreos, los cuales forman un estrato de copas (dosel) más o menos continuo cuya área de cobertura arbórea representa más de 70% del área total de la unidad, y con altura del dosel superior a cinco metros. Estas formaciones vegetales no han sido intervenidas o su intervención ha sido selectiva y no ha alterado su estructura original y las características funcionales (IGAC, 1999).

3.1.2 Bosque abierto: Cobertura constituida por una comunidad vegetal dominada por elementos típicamente arbóreos regularmente distribuidos, los cuales forman un estrato de copas (dosel)
discontinuo, con altura del dosel superior a cinco metros y cuya área de cobertura arbórea representa entre 30% y 70% del área total de la unidad. Estas formaciones vegetales no han sido intervenidas o su intervención ha sido selectiva y no ha alterado su estructura original y las características funcionales.

3.2 ÁREAS CON VEGETACIÓN HERBÁCEA Y/O ARBUSTIVA: Comprende un grupo de coberturas vegetales de tipo natural y producto de la sucesión natural, cuyo hábito de crecimiento es arbustivo y herbáceo, desarrolladas sobre diferentes sustratos y pisos altitudinales, con poca o ninguna intervención antrópica.

3.2.1. Herbazal: Cobertura constituida por una comunidad vegetal dominada por elementos típicamente herbáceos desarrollados en forma natural en diferentes densidades y sustratos, los cuales forman una cobertura densa (>70% de ocupación) o abierta (30% - 70% de ocupación).

3.2.2. Arbustal: Comprende los territorios cubiertos por vegetación arbustiva desarrollados en forma natural en diferentes densidades y sustratos.

3.2.3 Vegetación secundaria o en transición: Comprende aquella cobertura vegetal originada por el proceso de sucesión de la vegetación natural que se presenta luego de la intervención o por la destrucción de la vegetación primaria, que puede encontrarse en recuperación tendiendo al estado original. Se desarrolla en zonas desmontadas para diferentes usos, en áreas agrícolas abandonadas y en zonas donde por la ocurrencia de eventos naturales la vegetación natural fue destruida. No se presentan elementos intencionalmente introducidos por el hombre.

3.3. ÁREAS ABIERTAS, SIN O CON POCA VEGETACIÓN: Comprende aquellos territorios en los cuales la cobertura vegetal no existe o es escasa, compuesta principalmente por suelos desnudos y quemados, así como por coberturas arenosas y afloramientos rocosos.

3.3.3. Tierras desnudas y degradadas: Esta cobertura corresponde a las superficies de terreno desprovistas de vegetación o con escasa cobertura vegetal, debido a la ocurrencia de procesos tanto naturales como antrópicos de erosión y degradación extrema y/o condiciones climáticas extremas.

1.1.3.4.4 Áreas Húmedas

Comprende aquellas coberturas constituidas por terrenos anegadizos, que pueden ser temporalmente inundados y estar parcialmente cubiertos por vegetación acuática, localizados en los bordes marinos y al interior del continente.

4. ÁREAS HÚMEDAS

4.1. Áreas húmedas continentales

4.1.1. Zonas Pantanosas

4.1. Áreas húmedas continentales: Las áreas húmedas hacen referencia a los diferentes tipos de zonas inundables, pantanos y terrenos anegadizos en los cuales el nivel freático está a nivel del suelo en forma temporal o permanente.

4.1.1. Zonas Pantanosas: Esta cobertura comprende las tierras bajas, que generalmente permanecen inundadas durante la mayor parte del año, pueden estar constituidas por zonas de divagación de cursos de agua, llanuras de inundación, antiguas vegas de divagación y depresiones naturales donde la capa freática aflora de manera permanente o estacional. Comprenden hondonadas donde se recogen y naturalmente se detienen las aguas, con fondos más o menos cenagosos. Dentro de los pantanos se pueden encontrar cuerpos de agua, algunos con cobertura
parcial de vegetación acuática, con tamaño menor a 25 ha, y que en total representan menos de 30% del área total del pantano.

1.1.3.4.5 Superficies de agua

Son los cuerpos y cauces de aguas permanentes, intermitentes y estacionales, localizados en el interior del continente.

La metodología establece que se clasifican como ríos aquellos que presenten un ancho del cauce mayor o igual a 50 metros, el cual no es el caso de Chía, donde los ríos Frío y Bogotá presentan un ancho menor, sin embargo, estos se incluyen como cobertura al ser los principales cuerpos de agua del municipio.

<table>
<thead>
<tr>
<th>SUPERFICIES DE AGUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Aguas continentales</td>
</tr>
<tr>
<td>5.1.1 Ríos (50 m)</td>
</tr>
<tr>
<td>5.1.4. Cuerpos de agua artificiales</td>
</tr>
</tbody>
</table>

5.1. Aguas continentales: Son cuerpos de aguas permanentes, intermitentes y estacionales que comprenden lagos, lagunas, ciénagas, depósitos y estanques naturales o artificiales de agua dulce (no salina), embalses y cuerpos de agua en movimiento, como los ríos y canales.

5.1.1 Ríos (50 m): Un río es una corriente natural de agua que fluye con continuidad, posee un caudal considerable y desemboca en el mar, en un lago o en otro río.

Por el municipio transcurren 2 ríos principales, correspondientes al río Frío y al río Bogotá.

5.1.4 Cuerpos de agua artificiales: Esta cobertura comprende los cuerpos de agua de carácter artificial, que fueron creados por el hombre para almacenar agua usualmente con el propósito de generación de electricidad y el abastecimiento de acueductos, aunque también para prestar otros servicios tales como control de caudales, inundaciones, abastecimiento de agua, riego y con fines turísticos y recreativos.

En esta categoría se clasificaron cuerpos de agua que se encuentran como reservorios principalmente en los usos agrícolas y con usos paisajísticos en unidades de vivienda en condominio.

1.1.3.5 Conflictos de uso

Para la determinación de los conflictos de uso, se utilizó la metodología establecida en el Estudio de los Conflictos de Uso del Territorio Colombiano a escala 1:100.000, realizado por el IGAC (2012).

La metodología en mención define el modelo lógico presentado en la Figura 19:
1.1.3.5.1 Oferta ambiental

Figura 20. Áreas de conservación y protección ambiental

Fuente: Adaptado de IGAC (2012)
Áreas de conservación y protección ambiental:

Dentro de estas áreas se encuentran las áreas de protección legal que conforman el SINAP, las cuales en el caso de Chía corresponden a la Reserva Forestal Protectora Productora de la Cuenca Alta del Río Bogotá, realinderada por la Resolución 138 de 2014, y a la Reserva Natural de la Sociedad Civil El Sauce registrada mediante la Resolución 98 de 2018.
En el municipio existen áreas con otras figuras de protección, como las rondas de los ríos Bogotá (150 m) y Frío (75 m), rondas de protección de quebradas y chucuas (30 m), humedales (30 m) y nacimientos (100 m).

Se incluyeron áreas prioritarias para la conservación, correspondientes a las áreas de especial importancia ecosistémica, como humedales y suelos pertenecientes a las clases agrológicas 7 y 8, y áreas con otras coberturas prioritariamente naturales, que corresponden a las delimitadas dentro del numeral 3 de la clasificación Corine Land Cover adaptada para Colombia, detalladas en el numeral 1.1.3.4.3 del presente documento.

- Áreas para la producción agrícola y ganadera:

Dentro de las áreas para la producción agrícola y ganadera se relacionan los suelos pertenecientes a las Clases agrológicas 2 y 3, que de acuerdo con lo establecido en el artículo 2.2.2.2.1.3 del Decreto 1077 de 2015, se encuentran dentro de las categorías de protección en suelo rural, y las clases agrológicas 4 a 6, con vocación agrícola, ganadera o agroforestal.

- Áreas de amenaza:

Finalmente, se sobreponen las áreas delimitadas como amenaza alta, tomadas del diagnóstico del POCMA del río Bogotá para los eventos movimientos en masa, inundación y avenida torrencial.

1.1.3.5.2 Demanda ambiental

La demanda ambiental, presentada en la Figura 23, incluye las coberturas y usos determinadas en el numeral 1.1.3.4, así como el Resguardo indígena, delimitado por el INCODER por medio del Acuerdo 315 de 2013 (INCODER, 2013).
1.1.3.5.3 Determinación de conflictos de uso del suelo

Partiendo de la oferta ambiental y de la demanda ambiental determinadas se definió la concordancia entre el uso actual y el uso potencial recomendado, o discrepancia por sub o sobreutilización de dichos recursos (Figura 24).

Se pueden presentar tierras sin conflicto o usos adecuados o los conflictos pueden darse por subutilización, sobreutilización, usos inadecuados, conflictos mineros, en áreas pantanosas por utilización agropecuaria, en áreas urbanas y por la construcción de obras civiles, conflictos legales en áreas protegidas.

De acuerdo con IGAC (2012) las tierras sin conflictos de uso o en uso adecuado se caracterizan porque la oferta ambiental dominante guarda correspondencia con la demanda de la población; el conflicto de uso por subutilización se presenta en tierras donde la demanda ambiental es menos intensa en comparación con la mayor capacidad productiva de ellas; la sobreutilización se presenta en las tierras en las cuales los agro-ecosistemas predominantes hacen un aprovechamiento intenso de la base natural de recursos, sobrepasando su capacidad natural productiva; ello lo hace incompatible con la vocación de uso principal y los usos compatibles recomendados para la zona, con graves riesgos de tipo ecológico y/o social.

La evaluación de los conflictos se realizó para el 91.2% del área total del municipio, como se observa en la Tabla 6 sin incluir el área urbana del municipio, y aquellos polígonos que el IGAC calificó como construcciones en la clasificación de clases agrológicas que realizó para el municipio. Teniendo en cuenta lo anterior, las tierras sin conflictos de uso o en uso adecuado corresponden a 3497.54 ha o el 43.5% del área total del municipio. El conflicto de uso por subutilización se presentó en 205.09 ha, correspondiente al 2.5% del área total del municipio. El conflicto por sobreutilización se presenta en el 45.1% del área total del municipio, correspondiente a 3631.19 ha.
Tabla 6. Datos de conflictos de uso

<table>
<thead>
<tr>
<th>Conflicto</th>
<th>Tipo de conflicto</th>
<th>Total área (ha)</th>
<th>% de área del municipio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sobreutilización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conflictos mineros</td>
<td></td>
<td>77.19</td>
<td>1.0</td>
</tr>
<tr>
<td>Conflictos urbanos</td>
<td></td>
<td>2802.76</td>
<td>34.8</td>
</tr>
<tr>
<td>Sobreutilización ligera</td>
<td></td>
<td>107.24</td>
<td>1.3</td>
</tr>
<tr>
<td>Sobreutilización moderada</td>
<td></td>
<td>165.51</td>
<td>2.1</td>
</tr>
<tr>
<td>Sobreutilización severa</td>
<td></td>
<td>478.49</td>
<td>5.9</td>
</tr>
<tr>
<td>Total Sobreutilización</td>
<td></td>
<td>3631.19</td>
<td>45.1</td>
</tr>
<tr>
<td>Subutilización</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subutilización ligera</td>
<td></td>
<td>2.43</td>
<td>0.03</td>
</tr>
<tr>
<td>Subutilización moderada</td>
<td></td>
<td>165.94</td>
<td>2.1</td>
</tr>
<tr>
<td>Subutilización severa</td>
<td></td>
<td>36.72</td>
<td>0.5</td>
</tr>
<tr>
<td>Total Subutilización</td>
<td></td>
<td>205.09</td>
<td>2.5</td>
</tr>
<tr>
<td>Uso adecuado o sin conflicto</td>
<td></td>
<td>3497.54</td>
<td>43.5</td>
</tr>
<tr>
<td>Total general</td>
<td></td>
<td>7333.83</td>
<td>91.2</td>
</tr>
<tr>
<td>Total área municipio</td>
<td></td>
<td>8044.91</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia (2020)

1.1.4 Hidrografía e Hidrología

1.1.4.1 Hidrología regional

Figura 25. Hidrografía regional.

El sistema hidrográfico de Chía está definido por los valles del río Frío (occidente) y el del río Bogotá (oriente), cada uno de estos delimita las principales unidades hidrográficas del municipio con aportes de agua desde cuencas más pequeñas que nacen en los cerros y confluyen en el valle. Estas cuencas provisionan y regulan el agua en el municipio para los ecosistemas y la...
biodiversidad que abren, junto a los pobladores urbanos-rurales que aún hacen uso de la misma y de las actividades socioeconómicas y culturales que desarrollan (SDMA, 2017).

En términos de Zonificación hidrográfica según lo establecido por IDEAM (2013) el municipio hace parte de la unidad 2120, correspondiente al área hidrográfica 2 Magdalena – Cauca, zona hidrográfica 1 Alto Magdalena y Subzona hidrográfica 20 Río Bogotá.

El municipio hace parte de 2 subcuenas, correspondientes a la subcuenca Río Frío y la subcuenca Río Bogotá Sector Tibitoc – Soacha, y a su vez hace parte de 2 microcuenas, Directos cuenca baja Río Frío y Río Bogotá (Sector Tibitoc - Chía) (IDEAM, 2013).

Figura 26. Codificación de unidades hidrográficas – Microcuenca Chía

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>20</th>
<th>14</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>AH: Magdalena – Cauca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZH: Alto Magdalena</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcuenca: Río Frío</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcuenca: Directos cuenca baja Río Frío</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 27. Microcuenca Chía

Fuente: Elaborado con información base de Consorcio Huitaca (2017)
1.1.4.2 Caracterización de la red de drenaje

Se presenta la jerarquización de la red de drenaje establecida en el POMCA del río Bogotá (Consortio Huitaca, 2017), la cual utiliza la metodología de Horton (1945) y los criterios de Schumm (1956) y Strahler (1952), que propone que todo cauce sin afluentes es de orden 1; en la confluencia de dos cauces de orden u se origina un segmento de cauce de orden u+1 y cuando la confluencia ocurre entre cauces de diferente orden, la confluencia conserva el mayor orden entre sus afluentes.

<table>
<thead>
<tr>
<th>Microcuenca</th>
<th>Código</th>
<th>Orden de cuenca</th>
<th>Patrón de drenaje</th>
<th>Longitud de cauces (Km)</th>
<th>Área (Km²)</th>
<th>Densidad de drenaje (Km/Km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Bogotá (Sector Tibitoc - Chía)</td>
<td>2120-0704</td>
<td>7</td>
<td>Dendrítico</td>
<td>305.7</td>
<td>172.5</td>
<td>1.77</td>
</tr>
<tr>
<td>Directos cuenca baja</td>
<td>2120-1401</td>
<td>7</td>
<td>Dendrítico</td>
<td>128.6</td>
<td>70.9</td>
<td>1.81</td>
</tr>
</tbody>
</table>

Fuente: Consortio Huitaca (2017)

El patrón de drenaje dendrítico es aquel que presenta ramificaciones formando ángulos agudos, y corresponde a un patrón de drenaje erosional.

La cantidad de ríos y quebradas que llegan o tributan al río principal dentro del área de la cuenca se conoce como densidad de drenaje. Este es un parámetro revelador del régimen y de la morfología de la cuenca, porque relaciona la longitud de los cursos de agua con el área total. De esta manera, los valores altos reflejan un fuerte escurrimiento. La longitud total de los cauces dentro de una cuenca hidrográfica (L), dividida por la superficie total de la Cuenca (A), define la densidad de drenaje o longitud de cauces por unidad de área. Este parámetro se expresa en Km/Km². Este es un índice importante, puesto que refleja la influencia de la geología, topografía, suelos y vegetación en la cuenca hidrográfica, y está relacionado con el tiempo de salida del escurrimiento superficial de la cuenca (CORTOLIMA, s.f.).

De acuerdo con CORTOLIMA (s.f.) densidades de drenaje inferiores a 1.9 se consideran bajas. Una densidad de drenaje alta refleja una cuenca muy bien drenada que debería responder, relativamente rápido, al influyo de la precipitación. Una cuenca con baja densidad de drenaje refleja un área pobremente drenada, con respuesta hidrológica muy lenta. Para el caso de las microcuenças de las cuales hace parte el municipio se presentan densidades de drenaje que se podrían considerar bajas, lo cual se puede relacionar con los fenómenos de urbanización que presentan estas microcuenças.

1.1.4.3 Hidrología local

Los cuerpos de agua en el municipio se clasifican en ríos, nacimientos, quebradas, drenajes, escorrentías, humedales y vallados.

Se identifican los cuerpos de agua que drenan a las microcuenças del río Bogotá y del río Frío (Tabla 8).
Figura 28. Red hídrica Chía

Tabla 8. Sistema hídrico municipal

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Flujo (Temporalidad)</th>
<th>Longitud (m)</th>
<th>Altura nacimiento (msnm)</th>
<th>Ubicación (Vereda y/o sector)</th>
<th>Aspectos para resaltar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drenaje Caseteja</td>
<td>Intermítente</td>
<td>706</td>
<td>2712</td>
<td>Yerbabuena, límites Cajicá y Sopó.</td>
<td>Parte alta con presencia de parches de bosque plantado.</td>
</tr>
<tr>
<td>Quebrada El Chirca</td>
<td>Continuo</td>
<td>11148</td>
<td>2929</td>
<td>Yerbabuena, límites Urbanización Encenillos de Sindamanoy y la cantera Lomas de Resaca.</td>
<td>Expotación minera para materiales de construcción en la margen izquierda de la cuenca.</td>
</tr>
<tr>
<td>Quebrada El Codito</td>
<td>Intermítente</td>
<td>1736</td>
<td>2660</td>
<td>Fusca, costado Norte del hipódromo Los Andes.</td>
<td>Presenta interrupción del cauce por la vivienda construida.</td>
</tr>
<tr>
<td>Quebrada El Rincón</td>
<td>Continuo</td>
<td>6653</td>
<td>2676</td>
<td>Yerbabuena, sector Instituto Caro y Cuervo.</td>
<td>Presenta disminución del cauce por la captación de agua en tanques y reservorios, y uso en pequeños sistemas de riego y abrevadero. En su paso por el conjunto Carina se forma un reservorio de agua con presencia de aves (gansos, tinguas, garzas).</td>
</tr>
<tr>
<td>Quebrada Fusca</td>
<td>Continuo</td>
<td>3207</td>
<td>2960</td>
<td>Fusca, costado Norte de la cantera Trabajos Urbanos.</td>
<td>La parte baja se encuentra canalizada, y por encima de 2597msnm presenta captaciones directas de agua, cultivos y viviendas en área de ronda.</td>
</tr>
<tr>
<td>Quebrada Honda</td>
<td>Continuo</td>
<td>16136</td>
<td>3122</td>
<td>Límite veredas Yerbabuena y Fusca.</td>
<td>Nace en la parte alta de la vereda Fusca, en la RFPP Cuenca Alta Río Bogotá, con vegetación nativa y presencia de fauna por encima de los 2844msnm. Discurre hacia la sabana con disminución de su área de ronda por la superficie construida para viviendas y el uso agropecuario, con presencia de parches de bosque plantado (piojo y eucalipto). Converge en la quebrada Santiamén, es canalizada por tubería en un tramo, y finalmente desemboca en un</td>
</tr>
<tr>
<td>Quebrada La Mana</td>
<td>Continuo</td>
<td>4857</td>
<td>2841</td>
<td>Yerbabuena, sector Sofropolis - finca San Lorenzo.</td>
<td></td>
</tr>
<tr>
<td>Nombre</td>
<td>Flujo (Temporalidad)</td>
<td>Longitud (m)</td>
<td>Altura nacimiento (msnm)</td>
<td>Ubicación (Vereda y/o sector)</td>
<td>Aspectos para resaltar</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Quebrada Santiamén</td>
<td>Continuo</td>
<td>4045</td>
<td>2781</td>
<td>Yerbabuena, conjunto residencial, Lagos de Yerbabuena.</td>
<td>El agua de la quebrada es retenida en cuatro lagunas del conjunto residencial, siguiendo posteriormente su curso hasta unirse con la Q. La Maná.</td>
</tr>
<tr>
<td>Quebrada Sindamanyo</td>
<td>Continuo</td>
<td>7219</td>
<td>2695</td>
<td>Yerbabuena, Urbanización Encilllos de Sindamanyo.</td>
<td>Recibe aportes de agua lluvia desde los cerros orientales, es canalizada en un tramo por tubería, y presenta varios reservorios con vegetación nativa sobre su ronda hídrica durante su recorrido.</td>
</tr>
<tr>
<td>Quebrada Tiquiza</td>
<td>Intermitente</td>
<td>2609</td>
<td>2632</td>
<td>Límite veredas Tiquiza y Fonquetá.</td>
<td>En algunos tramos el flujo de agua ha sido interrumpido por la disposición de escombros. Aguas arriba de la confluencia en el río Frío, en la planicie, se presenta acumulación de agua en un reservorio natural que ha sido rellenado ilegalmente con escombros para cambiar el drenaje natural de la quebrada. En la parte baja se presenta inundación en época de lluvias, presentando canalización por tubería subterránea en su paso por la carretera.</td>
</tr>
<tr>
<td>Drenaje Castillo Marroquín</td>
<td>Intermitente</td>
<td>716</td>
<td>2670</td>
<td>Yerbabuena, sector Castillo Marroquín.</td>
<td>Se forma en los cerros orientales, recibe las aguas tratadas en la planta de SOFASA (Sociedad de Fabricación de Automotores), y desemboca en el río Bogotá.</td>
</tr>
<tr>
<td>Drenaje Sofasa</td>
<td>Continuo</td>
<td>1394</td>
<td>2735</td>
<td>Fusca, predio SOFASA.</td>
<td>Nace en los cerros orientales, con interrupciones en su cauce por viviendas y la cantera Bella Escocia. En la parte baja converge en dos canales de agua lluvia (vallados), uno para uso riego y el otro para su desembocadura en el río Bogotá.</td>
</tr>
<tr>
<td>Drenaje Bella Escocia</td>
<td>Intermitente</td>
<td>3747</td>
<td>2670</td>
<td>Fusca, costado norte del Colegio María Ángela.</td>
<td>El agua es canalizada por tubería para el abastecimiento de la población, es conducida posteriormente a través de canales de aguas lluvias (vallado).</td>
</tr>
<tr>
<td>Drenaje Tundama</td>
<td>Intermitente</td>
<td>1900</td>
<td>2489</td>
<td>Límite con Bogotá D.C.</td>
<td></td>
</tr>
<tr>
<td>Chucua de Fagua</td>
<td>Continuo</td>
<td>5883</td>
<td>2558</td>
<td>Vereda Fagua, sector MG– El Bosque</td>
<td>Canaliza el agua lluvia proveniente de los cerros occidentales, el flujo de agua es continuo y abundante, no obstante, en algunos puntos se presenta disposición de residuos sólidos.</td>
</tr>
<tr>
<td>Chucua de Cajicá</td>
<td>Continuo</td>
<td>5452</td>
<td>2569</td>
<td>Límite con Cajicá</td>
<td>Canaliza el agua lluvia proveniente de los cerros occidentales</td>
</tr>
<tr>
<td>Chucua de Tiquiza</td>
<td>Continuo</td>
<td>2807</td>
<td>2569</td>
<td>Vereda Tiquiza, en el límite con la vereda Fagua</td>
<td>Canaliza el agua lluvia proveniente de los cerros occidentales</td>
</tr>
</tbody>
</table>

Fuente: SDMA (2017)

1.1.4.3.1 Cuerpos lóticos

Los ecosistemas lóticos (del latín lotus: que significa lavar), se caracterizan porque en ellos el agua presenta un movimiento definido, continuo e irreversible. En estos ecosistemas la corriente es un factor determinante y selectivo respecto a las comunidades que en él habitan. Son ecosistemas abiertos debido a su estrecha relación con el sistema terrestre que los rodea ya que dependen de él para una parte importante del suministro básico de energía a través del aporte de materia orgánica (Moreno, 2012).
- **Nacimientos**

La SDMA en 2019 delimitó 3 nacimientos de agua en la vereda Fusca, sobre los cerros orientales del municipio, como se observa en la Figura 28.

- **Quebradas y drenajes**

En la actualización de fuentes hídricas realizada por la SDMA en 2019 se reconocen 2 drenajes y 11 quebradas. Los drenajes corresponden a Casateja y Portal de Fusca, y las quebradas se denominan El Chircal, El Codito, El Rincón, Fusca, Honda, La Mana, Santiamén, Sindamanoy, Tíquiza, Torca y Zanjón.

![Figura 29. Quebrada Tíquiza – Quebrada Zanjón](image1)

Fuente: SDMA (2019)

Las quebradas Tíquiza y Zanjón se encuentran en la parte occidental del municipio. La quebrada Tíquiza se localiza en el límite de las veredas Tíquiza y Fonquetá y desemboca en el río Frío y la quebrada Zanjón se localiza en el área de Resguardo Indígena y corresponde a un drenaje corto de tipo intermitente que no desemboca en un cauce principal.

![Figura 30. Drenaje Casateja, Quebrada El Chircal y Quebrada Sindamanoy](image2)

Fuente: SDMA (2019)
El Drenaje Casateja se localiza en la vereda Yerbabuena en el límite con Sopó. Transcurre desde un área con cobertura natural hasta cruzar la Autopista Norte por un Box Culvert, sin desembocar en el río Bogotá. La quebrada El Chical transcurre por el costado sur de la cantera Lomas de Resaca, cruza la Autopista Norte por un Box Culvert y desemboca en el río Bogotá. El agua de la quebrada Sindamanoy se forma por escorrentía en los Cerros Orientales, en el predio perteneciente a la Urbanización Encenillos de Sindamanoy; en parte es canalizada mediante un tubo, para más adelante salir a su cauce. Durante su recorrido, se conformaron varios jagüeyes aprovechando la topografía del terreno, los cuales cuentan con vegetación nativa sobre su ronda hídrica. Esta quebrada sigue su recorrido por la urbanización Sindamanoy y atraviesa la carrera 7 y la autopista Norte, para desembocar en el río Bogotá (Mendoza, 2013).

Figura 31. Quebrada La Mana, Quebrada Santiamén y Quebrada El Rincón

Fuente: SDMA (2019)

El cauce principal de la quebrada La Mana nace en los predios que pertenecen a la urbanización Sindamanoy, y cruza por el predio Sofropolis; lugar donde se une con la quebrada Santiamén, para atravesar mediante un tubo, el predio del Colegio Trinidad del Monte. Su cauce cruza el predio del Instituto Caro y Cuervo, el cual, se encuentra represado en un reservorio donde convergen las aguas de la quebrada El Rincón, para desembocar luego en el río Bogotá, en donde el río forma un meandro que genera una zona de acumulación hídrica de gran importancia para la franja de inundación del río Bogotá (Mendoza, 2013).

La quebrada Santiamén pasa por el conjunto residencial Lagos de Yerbabuena, el cual implementó una ronda de protección en la hídrica mediante un cercado a aproximadamente 15 metros a cada lado del cauce principal, además, este predio conformó 4 grandes lagunas que retienen el agua de la quebrada para ser utilizada en la planta de tratamiento de agua potable y distribuirla a las 30 casas del conjunto. Posteriormente sigue su trayecto por el predio Sofropolis para unirse a la quebrada La Mana (Mendoza, 2013).

Durante el recorrido por la parte alta de la quebrada El Rincón se encuentran tanques de reserva y pozos que abastecen de agua a los predios y condominios cercanos, esto retiene el agua y hace que disminuya su cauce. Hay presencia de sistemas de riego abastecidos por la quebrada para pequeños cultivos, así como ganadería en la ronda de la quebrada. También se evidenció que en el predio del conjunto Carina, con permiso de la CAR, se hace captación del agua de la quebrada El Rincón, para conformar una lagoa que también colecta las aguas lluvias; al realizar el recorrido por esta laguna, se observaron gansos, tinguas, garzas y varias especies de aves (Mendoza, 2013).
La quebrada Honda se encuentra en parte conservada, al tener un sector de su ronda hídrica demarcada (aproximadamente 5 metros en ambos costados del cauce principal), con vegetación nativa y presencia de fauna, en especial en la parte alta de la quebrada sobre la cota 2.844 msnm. Sin embargo, al llegar al piedemonte, la ronda de la quebrada es reducida por el impacto que produce la construcción de viviendas y el uso agropecuario. La comunidad ha hecho un esfuerzo conjunto para crear la asociación AsoHonda; que busca el beneficio mutuo con la construcción de dos tanques de reserva de agua potable, como acueducto veredal que abastece aproximadamente a 170 familias de la vereda Yerbabuena (Mendoza, 2013).

El cauce de la quebrada El Codito se encuentra interrumpido por la construcción del conjunto residencial “Bosques de la Morea”, en su parte alta donde una vivienda obstaculiza el curso principal de la quebrada (Mendoza, 2013).

En la parte baja de la quebrada Fusca, el cauce principal se encuentra canalizado debido a una construcción ubicada en esta zona. Así mismo en un predio cercano, la quebrada tiene una ronda hídrica delimitada (aproximadamente 5 metros en ambos costados del cauce principal), en la cual se ha realizado un proceso de reforestación con siembra de especies nativas. Sin embargo, sobre la cota 2.597 msnm hay presencia de cultivos, captación de agua y construcción de viviendas dentro de la ronda de la quebrada (Mendoza, 2013).

- **Chucuas**

De acuerdo con la caracterización realizada por la SDMA (2019) se incluyen 3 chucuas denominadas Chucua de Cajicá, Chucua de Fagua y Chucua de Tíquiza. Se resalta que, como resultado de un proceso de gestión de la comunidad, la CAR declaró como humedal un sector de la Chucua de Fagua.

Las Chucuas son cuerpos de agua semi-naturales, destinados principalmente a usos agropecuarios. Se considera de relevancia la Chucua de Fagua la cual se presume hace parte de un sistema de cauces abandonados (paleocauces) por donde discurría el Río Frío, desde la última glaciación. Como tal el cuerpo de agua que ocupa la Chucua de Fagua es alimentado tanto por aguas lluvias, como por escorrentía y nivel freático, este último en relación con la cercanía a la vega del Río Frío (Kappa S.A.S., 2018).
El curso de agua de la Chucua de Fagua en septiembre de 2017 se vio afectado por una actividad de relleno de su cauce en el sector denominado El Darién. Denuncias ciudadanas condujeron a la imposición de una medida preventiva por parte de la CAR, por medio de la Resolución DRSC No. 0460 de 12 DIC. 2017 consistente en la suspensión inmediata de las actividades de remoción de tierras, relleno y reducción de cauce (ancho de canal) del cuerpo hídrico Humedal Chucua de La Fagua y se obligaba a los presuntos responsables a llevar a cabo las obras para restaurar a su estado original el cauce del cuerpo hídrico afectado. Se resalta que a 2020 dichas obras de restauración no se han realizado, sin embargo, el trazado original de la Chucua se mantiene en la cartografía del municipio ya que dicho curso debe recuperarse, y adicionalmente la CAR ordenó incluir en la Estructura Ecológica Principal este cuerpo hídrico y su ronda de protección, así como los usos principales, compatibles, condicionados y prohibidos, según lo establecido en el numeral 3.2 del Acuerdo CAR 16 de 1998.

Figura 33. Chucuas del municipio

- **Escorrentías**

Corresponden a pequeños drenajes intermitentes por los cuales discurre el agua lluvia durante los eventos de precipitación. Se localizan en los cerros occidentales y orientales, como se observa en la Figura 28.

1.1.4.3.2 **Cuerpos lenticos**

Los ecosistemas lenticos, (del latín lentus, que significa lento), son aquellos donde el agua interior se encuentra estancada o que no representan corrientes continuas. En ellos los ejes de variación o gradientes ecológicos más importantes se relacionan con la estructura vertical llamada columna de agua y con la diferenciación entre la zona litoral y la de aguas abiertas o limnéticas (Moreno, 2012).
En el municipio se reconocen varios humedales, relacionados principalmente con el valle de inundación del río Bogotá. Estos cuerpos de agua han sido delimitados en varios estudios, a saber:

- Cuerpos de agua delimitados en la zonificación del POMCA del río Bogotá (Figura 34).
- Humedales Chía 02, Chía 03, Chía 16 y Samaría 1 delimitados en el informe final del contrato No. 1518 de 2015 de la CAR, cuyo objeto era “Realizar la delimitación, caracterización biofísica y descripción del componente social de 100 humedales identificados y priorizados en la jurisdicción de la CAR, incluyendo la determinación de la cota máxima de inundación y su correspondiente área de protección” (CAR, 2015) (Figura 35).
- Humedal Chía Adyacente delimitado en el estudio “Delimitación, caracterización biofísica y descripción del componente social de ciento cincuenta (150) humedales identificados y priorizados en la jurisdicción de la CAR, incluyendo la determinación de la cota de máxima inundación y su correspondiente área de protección” (CAR, 2015) (Figura 36).
- Humedal Lagos de Chía, delimitado en el Informe Técnico 408 del 23 de diciembre de 2016 del DGOAT de la CAR, en el que se indicó que “Se recomienda incluir en la EEP del municipio el humedal del predio Lagos de Chía y su ronda de protección” (Figura 37).

Respecto a este humedal se destaca que el predio en el que se encuentra fue adquirido por el municipio.

Figura 34. Cuerpos de agua delimitados en el POMCA Río Bogotá
Figura 35. Humedales identificados en Chía según Estudio 100 humedales

Fuente: CAR (2015)

Figura 36. Humedal identificado en Chía según Estudio 150 humedales

Fuente: CAR (2017)
La SDMA en 2019 realizó visita ocular a varios cuerpos de agua del municipio, delimitados por la CAR en un inventario preliminar. En la Tabla 9 se presentan estos cuerpos de agua.

Tabla 9. Verificación en campo Cuerpos lénticos

<table>
<thead>
<tr>
<th>Humedal</th>
<th>Localización</th>
<th>Registro</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1 - Caro y cuervo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humedal</td>
<td>Localización</td>
<td>Registro</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>A_2 - Rincón de Carola</td>
<td>![Mapa de Rincón de Carola]</td>
<td>![Imagen de Rincón de Carola]</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>1006989</td>
</tr>
<tr>
<td>A_3 - Canales carrilera</td>
<td>![Mapa de Canales carrilera]</td>
<td>![Imagen de Canales carrilera]</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>1008286</td>
</tr>
<tr>
<td>1008045</td>
<td>1008033</td>
<td>1008000</td>
</tr>
<tr>
<td>1035096</td>
<td>1035384</td>
<td>1034829</td>
</tr>
<tr>
<td>A_4 - Cairo II</td>
<td>![Mapa de Cairo II]</td>
<td>![Imagen de Cairo II]</td>
</tr>
<tr>
<td>X</td>
<td>Y</td>
<td>1007718</td>
</tr>
<tr>
<td>1007669</td>
<td>1033516</td>
<td></td>
</tr>
<tr>
<td>Humedal</td>
<td>Localización</td>
<td>Registro</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>A_5 - Cairo y U</td>
<td>X 1006908 Y 1032633</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X 1006865 Y 1032358</td>
<td></td>
</tr>
<tr>
<td>A_6 – Pista (Humedal Chía Adyacente)</td>
<td>X 1005440 Y 1030488</td>
<td></td>
</tr>
<tr>
<td>A_7 - Predio PTAR</td>
<td>X 1003981 Y 1029130</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X 1003838 Y 1029207</td>
<td></td>
</tr>
<tr>
<td>A_8 Samaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humedal</td>
<td>Localización</td>
<td>Registro</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>X 1003884 Y 1028499</td>
<td></td>
</tr>
<tr>
<td>A_9</td>
<td>X 1002359 Y 1031958</td>
<td></td>
</tr>
<tr>
<td>A_10</td>
<td>X 1002345 Y 1032480</td>
<td></td>
</tr>
<tr>
<td>Humedal</td>
<td>Localización</td>
<td>Registro</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>A_11 - Chucua de Fagua</td>
<td>X 1002004</td>
<td>Y 1031419</td>
</tr>
<tr>
<td>A_12</td>
<td>X 1001859</td>
<td>Y 1031119</td>
</tr>
<tr>
<td>A_13 - Hipódromo</td>
<td>X 1004598</td>
<td>Y 1028071</td>
</tr>
</tbody>
</table>

| | X 1004397 | Y 1028196 |
1.1.4.4 Morfometría

La morfometría se encuentra a escala de subcuenca, según lo indicado en Consorcio Huitaca (2017). A continuación, en la Figura 38 y Tabla 10 se presenta la información para las subcuenças del río Bogotá (Sector Tibitoc - Soacha) (2120-07) y del Río Frío (2120-14).

Figura 38. Subcuenças Chía

Fuente: Consorcio Huitaca (2017)
La subcuenca sector Tibitoc – Soacha comprende el sector entre la entrega del río Neusa y la entrega del río Balsillas en Soacha, con una de las más grandes áreas de drenaje de la cuenca media del río Bogotá, abarcando una área de 719 km² incluyendo la mayor parte de la zona urbana del distrito capital, representada hidrográficamente por las áreas de drenaje del río Juan Amarillo y del río Fucha.

La subcuenca está delimitada al oriente por los cerros orientales de la ciudad de Bogotá, los cuales representan las mayores elevaciones de la subcuenca que oscilan alrededor de los 3600 msnm; sin embargo la mayor parte de la cuenca se encuentra cubierta por la sabana de Bogotá con elevaciones mínimas de 2543 msnm. La cuenca tiene una forma rectangular oblonga, muy alargada y ligeramente achatada. En este sector el río Bogotá tiene una longitud de 113 km y presenta sus menores pendientes, las cuales oscilan alrededor del 0.05% en la mayor parte del recorrido (Consorcio Huitaca, 2017).

Por otro lado, la subcuenca del río Frío cuenta con un área de 202 km² y cuenta con un relieve de altas pendientes en el costado occidental de la cuenca y de menores pendientes en la parte baja, en cercanías a la entrega del río Frío al río Bogotá. La cuenca cuenta con condiciones adecuadas de drenaje, siendo el río frío un cauce de tipo rectilíneo, distribuido uniformemente en la cuenca, y con altas pendientes del cauce entre los 5 km y los 15 km de recorrido.

La cuenca tiene una forma rectangular oblonga, muy alargada y poco achatada. Las elevaciones de la cuenca oscilan entre los 3724 msnm y los 2562 msnm.

1.1.4.5 Régimen hidrológico

Las variaciones de parámetros meteorológicos en un contexto local se ven influenciadas por los determinantes climáticos. Adicionalmente, el relieve local y características de urbanización son responsables de aumento localizado de temperaturas y recorridos del viento que regulan los movimientos de masas de aire. En resumen, y teniendo en cuenta los determinantes globales y regionales, el clima en la Planicie de Inundación del Río Bogotá a su paso por el Municipio de Chía presenta un régimen bimodal de lluvias debido al desplazamiento en sentido norte-sur-norte de la ZCIT (Zona de confluencia intertropical) durante el año; con variaciones en la intensidad de las lluvias del orden decadal por el ciclo ENSO “El Niño Southern Oscillation” y la formación de nubes.
de tormentas de alta intensidad por efectos de carácter local como son el calentamiento y advección de masas húmedas que se desplazan a la zona.

Las lluvias exhiben un comportamiento de régimen bimodal con picos máximos en abril - mayo y octubre - noviembre debido al desplazamiento cíclico de la zona de convergencia intertropical. Las épocas de menores precipitaciones se dan entre los meses de diciembre y enero, con otro mínimo entre los meses de julio y agosto (Medio Natural S.A.S., 2018).

1.1.4.6 Análisis de caudales

En la Gráfica 1 y Gráfica 2 se presentan los caudales y niveles históricos registrados en las estaciones Puente Cacique y La Balsa, pertenecientes a la CAR.

<table>
<thead>
<tr>
<th>Tabla 11. Estaciones hidrológicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estación</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2120960</td>
</tr>
<tr>
<td>2120742</td>
</tr>
</tbody>
</table>

Fuente: Información CAR

Gráfica 1. Caudales y niveles Estación Pte Cacique

Gráfica 2. Niveles medios mensuales Estación Pte Cacique

Gráfica 2. Caudales y niveles Estación La Balsa

En general, esta estación permite concluir un incremento en los caudales y niveles de mayo a julio y nuevamente valores elevados en noviembre.

1.1.4.7 Calidad del agua

1.1.4.7.1 Agua superficial

La CAR mediante Acuerdo 43 del 17 de octubre de 2006, estableció los objetivos de calidad para la Cuenca del Río Bogotá a lograr en el año 2020, definiendo los usos del agua que se describen a través de cinco clases. Para el municipio de Chía se fijó la Clase IV, correspondiente a valores de los usos agrícola con restricciones y pecuario, cuyos límites permisibles se presentan en la Tabla 12.
Tabla 12. Concentraciones máximas Clase IV

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Expresado como</th>
<th>Valor más restrictivo (máximo que se puede obtener)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros orgánicos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBO</td>
<td>mg/l</td>
<td>50</td>
</tr>
<tr>
<td>Coliformes totales</td>
<td>NMP/100 ml</td>
<td>20000</td>
</tr>
<tr>
<td>Parámetros nutrientes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitratos</td>
<td>mg/l</td>
<td>10</td>
</tr>
<tr>
<td>Sólidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sólidos suspendidos</td>
<td>mg/l</td>
<td>40</td>
</tr>
<tr>
<td>Parámetros de interés sanitario</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminio</td>
<td>mg/l</td>
<td>5</td>
</tr>
<tr>
<td>Arsénico</td>
<td>CL 96/50</td>
<td>0.1</td>
</tr>
<tr>
<td>Berilio</td>
<td>CL 96/50</td>
<td>0.1</td>
</tr>
<tr>
<td>Boro</td>
<td>mg/l</td>
<td>0.3-0.4</td>
</tr>
<tr>
<td>Cádmio</td>
<td>CI 96/50</td>
<td>0.01</td>
</tr>
<tr>
<td>Cinc</td>
<td>CI 96/50</td>
<td>2</td>
</tr>
<tr>
<td>Cobalto</td>
<td>mg/l</td>
<td>0.05</td>
</tr>
<tr>
<td>Cobre</td>
<td>CL 96/50</td>
<td>0.2</td>
</tr>
<tr>
<td>Cromo (Cr+6)</td>
<td>mg/l</td>
<td>0.1</td>
</tr>
<tr>
<td>Flúor</td>
<td>mg/l</td>
<td>1</td>
</tr>
<tr>
<td>Hierro</td>
<td>mg/l</td>
<td>5</td>
</tr>
<tr>
<td>Litio</td>
<td>mg/l</td>
<td>2.5</td>
</tr>
<tr>
<td>Manganoso</td>
<td>mg/l</td>
<td>0.2</td>
</tr>
<tr>
<td>Mercurio</td>
<td>mg/l</td>
<td>0.01</td>
</tr>
<tr>
<td>Molibdeno</td>
<td>mg/l</td>
<td>0.01</td>
</tr>
<tr>
<td>Níquel</td>
<td>mg/l</td>
<td>0.2</td>
</tr>
<tr>
<td>pH</td>
<td>unidades</td>
<td>4.5-9.0</td>
</tr>
<tr>
<td>Plomo</td>
<td>mg/l</td>
<td>0.1</td>
</tr>
<tr>
<td>Sales</td>
<td>mg/l</td>
<td>3000</td>
</tr>
<tr>
<td>Selenio</td>
<td>mg/l</td>
<td>0.02</td>
</tr>
<tr>
<td>Vanadio</td>
<td>mg/l</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Parágrafo: Las restricciones a las que se refiere la presente clase, corresponden a que el NMP de coliformes totales no deberá exceder de 5000 cuando se use el recurso para riego de frutas que se consuman sin quitar la cáscara y para hortalizas de tallo corto. El NMP de coliformes fecales no deberá exceder de 1000 cuando se use el recurso para el mismo fin citado anteriormente.

Fuente: (CAR, 2006)

![Figura 39. Puntos de monitoreo de la CAR en la Cuenca del Río Bogotá](image)

Fuente: Elaborado con base en información CAR (2018)
Para el seguimiento de la calidad del agua en la cuenca del río Bogotá, la CAR cuenta con una red de 86 puntos de monitoreo, de los cuales 7 estaciones se encuentran en el área de influencia del municipio, presentadas en la Figura 39 a saber:

- 35. Estación LG - Pte Vargas
- 37. Aguas arriba de Chía
- 38. Descarga Municipio de Chía
- 39. Aguas abajo de Chía
- 40. Estación LG - Pte La Balsa
- 42. Río Frío – Cacique
- 43. Aguas abajo Río Frío

Con el fin de caracterizar la calidad del agua de la cuenca del río Bogotá, la CAR utiliza el Índice de calidad del agua (ICA), el cual es un valor numérico que califica en una de 5 categorías, la calidad del agua de una corriente superficial, con base en las mediciones obtenidas para un conjunto de 7 variables, registradas en una red de monitoreo. Este indicador permite conocer las condiciones de calidad fisicoquímica y microbiológica de un cuerpo de agua, e identifica problemas de contaminación en un punto determinado.

El ICA toma valores entre 0 y 1, los valores más bajos indican una peor calidad y mayores limitaciones para el uso del agua (Tabla 13). La aplicación del ICA se utiliza como una herramienta para determinar el estado de las cuencas de la región en un tiempo determinado y con su análisis se puede evaluar las restricciones en los usos definidos en cada tramo de una corriente.

<table>
<thead>
<tr>
<th>Tabla 13. Descriptores de Calidad del ICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categorías de valores que puede tomar el indicador</td>
</tr>
<tr>
<td>0.00 – 0.25</td>
</tr>
<tr>
<td>0.26 – 0.50</td>
</tr>
<tr>
<td>0.51 – 0.70</td>
</tr>
<tr>
<td>0.71 – 0.90</td>
</tr>
<tr>
<td>0.91 – 1.00</td>
</tr>
</tbody>
</table>

Fuente: Basado en información CAR (2019)

En la Tabla 14 se presentan los resultados históricos del ICA para las estaciones localizadas en el área de influencia del municipio.

<table>
<thead>
<tr>
<th>Tabla 14. Históricos Índice de calidad del agua (ICA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
</tr>
<tr>
<td>2009-II</td>
</tr>
<tr>
<td>2010</td>
</tr>
<tr>
<td>2011-I</td>
</tr>
<tr>
<td>2011-II</td>
</tr>
<tr>
<td>2012-I</td>
</tr>
<tr>
<td>2012-II</td>
</tr>
<tr>
<td>2013-I</td>
</tr>
<tr>
<td>2013-II</td>
</tr>
<tr>
<td>2014-I</td>
</tr>
<tr>
<td>2014-II</td>
</tr>
<tr>
<td>2015-I</td>
</tr>
<tr>
<td>2015-II</td>
</tr>
<tr>
<td>2016-I</td>
</tr>
<tr>
<td>2016-II</td>
</tr>
<tr>
<td>2017-I</td>
</tr>
<tr>
<td>2017-II</td>
</tr>
</tbody>
</table>
Se evidencia que en general la calidad del agua de las estaciones se clasifica como Mala, a excepción de la estación Río Frío – Cacique que en diversas ocasiones presentó calidad del agua Aceptable y Buena (CAR, 2019).

1.1.4.7.2 Agua de consumo

El agua de consumo es comprada en bloque a la Empresa del Acueducto y Alcantarillado de Bogotá – EAAB. De acuerdo con lo anterior, el sistema de acueducto del municipio de Chía es abastecido con agua del río Bogotá, potabilizada en la planta de tratamiento de Tibitoc por la EAAB que es el proveedor.

El agua tratada es transportada hacia Chía por medio de dos tuberías de concreto, una de 60 pulgadas en CCP y la otra de 78 pulgadas en PCCP. En el sitio denominado “La Caro” se deriva el flujo de agua requerido por el municipio de Chía a través de una tubería de 30 pulgadas en CCP. En este mismo sitio se encuentra la estación de macro medición y la estación reguladora de presiones de donde se deriva la tubería que lleva el agua hasta la red matriz del municipio para su distribución. Se realiza un bombeo hacia las partes altas del municipio y se alimenta a los tanques de Fonquetá y Lavaderos (EMSERCHÍA, 2019).

Con el fin de evaluar la calidad del agua suministrada se utiliza un indicador de riesgo denominado IRCA Índice de riesgo de la calidad de agua para consumo humano, el cual determina el grado de riesgo de ocurrencia de enfermedades relacionadas con el no cumplimiento de las características físicas, químicas y microbiológicas del agua para consumo humano.

De acuerdo con los resultados de las muestras analizadas por Emserchía de 2015 a 2019, el agua suministrada se clasifica bajo el Nivel de Riesgo: SIN RIESGO, según lo indicado por la Resolución 2115 de 2007.

1.1.4.8 Usos del agua

De acuerdo con la SDMA (2017), en cuanto a los usos del agua se presenta consumo humano en la quebrada Honda para el acueducto Asohonda (170 puntos), la quebrada Santiamén para las viviendas campestres, la quebrada Rincón y el drenaje Tundama para urbanizaciones, y en la quebrada Fusca para viviendas. Uso industrial en las quebradas Chircal, Fusca, Caseteja y el drenaje Portal de Fusca, este último con presencia de actividades para extracción de materiales de construcción.

El uso en riego se presenta en casi todas las quebradas y drenajes, a excepción de la quebrada El Chircal y el drenaje Sofasa, representando alrededor del 50% de todos los usos. El uso en abrevadero se presenta en todas las quebradas, a excepción de Sindamanoy con una fuerte presencia de vivienda campestre y de todos los drenajes naturales. En estos usos los reservorios de agua cumplen una función principal, especialmente en riego y abrevadero, seguidos del sector agroindustrial en la vereda La Balsa, y finalmente para uso paisajístico y recreativo en urbanizaciones y viviendas campestres.
En el sector del río Frío el agua se emplea en el sector agropecuario, con mayor proporción en abrevadero para la quebrada Tíquiza (56%) que en la chucua de Fagua (40%), siendo empleada esta última en mayor proporción para riego (60%) que la quebrada (28%).

Gráfica 3. Usos del agua en el municipio

1.1.4.9 Sentencia del Río Bogotá

1.1.4.9.1 Descripción de la sentencia

El fallo del 28 de marzo de 2014 del Consejo de Estado, sala de lo contencioso administrativo, sección primera, expediente 25000-23-27-000-2001-90479-01-2001-90479-01, estableció el saneamiento del Río Bogotá mediante la implementación de acciones que permitan la preservación del recurso hídrico, protegiendo las áreas de importancia estratégica, realizando un adecuado manejo de los vertimientos domésticos e industriales mediante la implementación y optimización de sistemas de tratamiento, fortaleciendo la gestión integral de los residuos sólidos, basada en el principio del aprovechamiento, utilizando como eje transversal e integrador de cada estrategia la educación, y el fomento de la cultura de cuidado y recuperación del Río Bogotá (Contraloría de Cundinamarca, 2019).

A continuación, se describen las órdenes a cargo del municipio de Chía.

1.1.4.9.2 Orden 4.18

"ORDÉNASE al Distrito Capital y a los demás entes territoriales aferentes a la cuenca hidrográfica del Río Bogotá que en el término perentorio e improporrogable de doce (12) meses contados a partir de la aprobación y declaración de la modificación y actualización del Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Bogotá – POMCA por parte de la Corporación Autónoma Regional de Cundinamarca – CAR, modifiquen y actualicen los Planes de Ordenamiento Territorial – POT, Planes Básicos de Ordenamiento Territorial - PBOT y Esquemas de Ordenamiento Territorial – EOT ajustándolos con los contenidos del mismo.

Adicionalmente, ORDÉNASE al Distrito Capital y a los demás entes territoriales aferentes al Río Bogotá, que, en el actual proceso de modificación de los POTs, PBOT y EOT y de acuerdo con los términos que el Ordenamiento jurídico ha establecido, incluyan en los mismos las variables ambientales, de cambio climático y la gestión de riesgos asociados a éstos.

Finalmente, ORDÉNASE a la Corporación Autónoma Regional de Cundinamarca – CAR asesorar al Distrito Capital y a los demás entes territoriales aferentes al Río Bogotá: i) en el actual proceso..."
de modificación de los POTs, PBOT y EOT y ii) en su articulación con el Plan de Ordenación y Manejo de la Cuenca Hidrográfica del Río Bogotá – POMCA una vez modificado éste de acuerdo con lo dispuesto en el numeral 4.8.”

Al respecto de esta orden, el municipio de Chía está adelantando el presente diagnóstico con el fin de iniciar un proceso de revisión del POT vigente, que por cuenta de la suspensión provisional del Acuerdo 100 de 2016, corresponde actualmente al Acuerdo 17 del 2000. En dicha revisión en cumplimiento a la orden 4.18 se incluirán los aspectos relacionados con la zonificación ambiental, gestión del riesgo y componente programático del POMCA del río Bogotá, adoptado mediante la Resolución 957 de 2019.

1.1.4.9.3 Orden 4.19

“ORDÉNASE al Distrito Capital y a los entes territoriales aferentes al Río Bogotá, que en el término perentorio e improrrogable de doce (12) meses contados a partir de la ejecutoria de esta sentencia, adopten en sus microcuencas los respectivos planes de manejo ambiental de conformidad con lo previsto en el título V del Decreto 1640 de 2012, como instrumento de protección a las fuentes hídricas.”

En el título V del Decreto 1640 de 2012, compilado en el Decreto 1076 de 2015, artículo 2.2.3.1.10.2, respecto a las microcuencas objeto de Plan de Manejo Ambiental se establece que “En aquellas microcuencas que no hagan parte de un Plan de Ordenación y Manejo de la Cuenca Hidrográfica, se formulará en las cuencas de nivel inferior al del nivel subsiguiente, según corresponda”. Teniendo en cuenta lo anterior, las microcuencas de Chía, referenciadas en la Figura 27, hacen parte del contenido programático del POMCA del río Bogotá, por lo cual no son objeto de PMA. Sin embargo, el municipio cuenta con un Sistema de Gestión Ambiental Municipal, adoptado mediante el Acuerdo 139 de 2018, en el cual se integran diferentes instrumentos, como el PMA municipal, el PGIRS, el POT y el PDM.

1.1.4.9.4 Orden 4.20

“ORDÉNASE al Distrito Capital y a los entes territoriales aferentes al Río Bogotá, que en el término perentorio e improrrogable de veinticuatro (24) meses contados a partir de la ejecutoria de esta sentencia, realicen, revisen y/o ajusten los Planes Maestros de Acueducto y Alcantarillado – PMAA de manera que se intercepten todos los vertimientos directos a cuerpos de agua y éstos sean conducidos a la planta de tratamiento de aguas residuales correspondiente. Los Planes Maestros de Acueducto y Alcantarillado – PMAA deberán incluir los planes de rehabilitación de redes”.

Se encuentra en ejecución el contrato de consultoría que tiene por objeto: Actualización de los documentos de los planes maestros de acueducto y alcantarillado del Municipio de Chía. ALCANCE: Actualización de los documentos de los planes maestros de acueducto y alcantarillado del municipio de Chía. El alcance de la presente consultoría esta dado a la evaluación integral de los planes maestros de acueducto y alcantarillado realizado en 2015 frente a los documentos base de este actualizados posteriormente, es decir, que deberá entregar una actualización de dichos planes teniendo como base el POT mediante Acuerdo 100 de 2016, el PDM 2016-2019 y el PSMV. Los productos finales, se espera serán entregados en 2020.

1.1.4.9.5 Orden 4.21

“ORDÉNASE al Distrito Capital y a los entes territoriales aferentes al Río Bogotá, que en el término perentorio e improrrogable de veinticuatro (24) meses contados a partir de la ejecutoria de esta sentencia, realicen, revisen y/o ajusten los Planes de Saneamiento y Manejo de Vertimientos – PSMV de manera que se garantice efectivamente un manejo integral y se minimice y reduzca la
contaminación en la cuenca hidrográfica del Río Bogotá, lo anterior bajo criterios técnicos y económicos”.

Actualmente existe un Plan de Saneamiento y Manejo de Vertimientos aprobado mediante Resolución CAR 743 de 2015 a la Empresa de Servicios Públicos de Chía Emserchía E.S.P., sin embargo y teniendo en cuenta la necesidad de actualización Emserchía radió a la CAR nuevo documento del PSMV, entregado mediante radicado CAR No. 20171144125 del 10 de noviembre de 2017, documento que actualmente se encuentra en estudio por parte de la Corporación.

En cuanto al permiso de vertimientos se otorgó bajo Resolución 2140 de 25 de julio de 2018 “Por el cual se otorga un permiso de vertimientos, se autoriza la ocupación de cauce y se adoptan otras determinaciones.

1.1.4.9.6 Orden 4.22

“ORDÉNASE al Distrito Capital y a los entes territoriales aferentes al Río Bogotá, que en el término perentorio e improrrogable de veinticuatro (24) meses contados a partir de la ejecutoria de esta sentencia, realicen, revisen y/o ajusten los Planes de Gestión Integrada de Residuos Sólidos – PGIRS. La formulación y elaboración del PGIRS deberá realizarse bajo un esquema de participación con los involucrados en la gestión, manejo y disposición de los residuos sólidos, acorde con los lineamientos de la jurisprudencia de la Corte Constitucional sobre el particular”.

Mediante el Decreto 29 de junio de 2016 se adoptó la actualización del Plan de Gestión Integral de Residuos Sólidos (PGIRS) para el Municipio de Chía. Actualmente, se está realizando el proceso de implementación en compañía de la Empresa de Servicios Públicos Emserchía, proyectado a un plazo de 12 años.

1.1.4.9.7 Orden 4.23

“ORDÉNASE a la Corporación Autónoma Regional de Cundinamarca – CAR y a todos y cada uno de los entes territoriales que hacen parte de la cuenca hidrográfica del Río Bogotá, que en el término perentorio e improrrogable de doce (12) meses contados a partir de la ejecutoria de esta sentencia, identifiquen e inventarien las áreas de manejo a las cuales hace referencia el Código de Recursos Naturales – Decreto 2811 de 1974 y las zonas de protección especial tales como páramos, subpáramos, nacimientos de agua y zonas de recarga de acuíferos que se encuentren en su jurisdicción, y de manera inmediata adopten las medidas necesarias para la protección, conservación y vigilancia de las mismas”.

El municipio elaboró el estudio titulado "Identificación y Georreferenciación de las Fuentes Hídricas del Municipio de Chía", Dependencia correspondiente: Dirección de Ambiente y Desarrollo Agropecuario (D.A.D.A.) de la Secretaría para el Desarrollo Económico – Alcaldía Municipal de Chía. Con la ejecución del presente contrato se corroboró la presencia o no del cauce principal de las fuentes hídricas (quebradas, drenajes, escorrentías, lagunas, reservorio, jagüeyes, etc.) que aún subsisten en los Cerros Orientales y Occidentales del municipio, las cuales corresponden a la cuenca del río Bogotá ubicada en su parte Oriental y la subcuenca del río Frío en su parte Occidental.

Se encuentra programado realizar el estudio de zonas de recargas de Acuíferos.

1.1.4.9.8 Orden 4.24

“ORDÉNASE a la Corporación Autónoma Regional de Cundinamarca – CAR, al Departamento de Cundinamarca, al Distrito Capital y a todos y cada uno de los entes territoriales que hacen parte de la cuenca hidrográfica del Río Bogotá, que en el término perentorio e improrrogable de dieciocho (18) meses contados a partir de la ejecutoria de esta sentencia, identifiquen e inventarien las zonas
donde se necesita iniciar procesos de reforestación protectora mediante la siembra de especies nativas colombianas y el cuidado de éstas. Precluido este plazo y en el término máximo de tres (3) meses prioricen las áreas degradadas o potrerizadas que necesitan con urgencia intervención para reforestación, la cual deberá iniciarse inmediatamente logrando progresivamente la recuperación y mantenimiento de todas ellas”.

La Secretaría de Medio Ambiente realizó en año 2015 un estudio de Especies Forestales en el cual se obtuvieron las zonas donde se requiere revegetalización e Iniciar un proceso gradual de reemplazo de especies introducidas por nativas en pro de la conservación de la Estructura Ecológica Municipal. Adicionalmente la Secretaría de Medio Ambiente en sus procesos misionales normales entrega material vegetal a los habitantes del municipio de requieran para sus viviendas, luego de hacer una asesoría técnica respecto del tipo de plantas que se piensan sembrar y el objetivo concreto de la siembra, el cual por lo general está relacionado con cercas vivas o setos.

1.1.4.9.9 Orden 4.25

“ORDÉNASE al Departamento de Cundinamarca, al Distrito Capital, a la Corporación Autónoma Regional de Cundinamarca – CAR y a los entes territoriales aferentes del Río Bogotá, promover la conservación y recuperación de las áreas de importancia estratégica para la conservación de recursos hídricos que surten de agua a los acueductos municipales, distritales y regionales, mediante la adquisición y mantenimiento de dichas áreas y la financiación de los esquemas de pago por servicios ambientales, de acuerdo con la Ley 99 de 1993 - artículo 108 - Ley 1450 de 2011 - artículo 210 – y el Decreto reglamentario 953 de 2013.

Asimismo, ORDÉNASE al Departamento de Cundinamarca, al Distrito Capital y a los entes territoriales que hacen parte de la cuenca hidrográfica del Río Bogotá apropiar de manera inmediata un porcentaje no inferior al 1% de sus ingresos corrientes para la adquisición y mantenimiento de dichas zonas o para financiar esquemas de pago por servicios ambientales de acuerdo con la Ley 1450 de 2011 - artículo 210 – y el Decreto reglamentario 953 de 2013”.

Para la ejecución del 1% de los ingresos corrientes de libre destinación de que trata el artículo 111 de la Ley 99 de 1993 reglamentado por el Decreto Único Nacional 1076 de 2015, se identificaron y priorizaron por parte de la CAR: predios de Importancia Estratégica Ambiental (AIE) ubicados en suelo de la Estructura Ecológica Principal. Se ha venido realizando adquisición de estos predios, adquiriendo 15 predios en el último cuatrienio.

1.1.4.9.10 Orden 4.27

“Igualmente, ORDÉNASE a la Corporación Autónoma Regional de Cundinamarca – CAR y a los entes territoriales aferentes al Río Bogotá que en el término perentorio e improrrogable de seis (6) meses contados a partir de la ejecutoria de esta sentencia, elaboren un plan de recuperación, restauración y manejo de los ríos y quebradas que hacen parte de la cuenca del Río Bogotá, el cual será incluido en el respectivo plan de desarrollo con los recursos financieros necesarios”.

Desde la SDMA se han realizado los procesos de mantenimiento y retiro de maleza para funcionamiento hidráulico en aproximadamente 12,778m de vallados, levantamientos topográficos altimétricos y planimétricos de 24,28 km de vallados del municipio esto buscando restaurar la conexión de estos y dar manejo adecuado a las aguas lluvias.

En el transcurso del 2019 se adjudicó el contrato 2019-CT-476, el cual pretende brindar el apoyo logístico para la organización y suministro de recursos humanos y material para la socialización del Plan de Manejo Ambiental (PMA).
1.1.4.9.11 Orden 4.32

“PREVÉNGASE a la Universidad de la Sabana que las futuras obras civiles de infraestructura realizadas para mitigar los riesgos frente a las crecientes del Río Bogotá se deberán ejecutar en coordinación con la autoridad ambiental y el Municipio de Chía, en el marco del proyecto denominado “Adecuación Hidráulica y Recuperación Ambiental del Río Bogotá”.

Mediante Comunicación 20150100013472 del 14 de mayo de 2015, la Secretaría de Planeación informó a la Universidad de la Sabana Campus Chía, que para futuras obras civiles de infraestructura se deberá contar con la autorización, licencias y coordinación de la CAR y el Municipio de Chía en el marco del proyecto “Adecuación hidráulica y recuperación ambiental del Río Bogotá”. La empresa INGECON S.A. el 26 de junio de 2019 informó el inicio de las obras de adecuación hidráulica del Río Bogotá en el Sector del Puente de la Virgen - Puente de Vargas de la cuenca alta, las cuales se prevé finalizarían en el segundo semestre de 2020.

1.1.4.9.12 Orden 4.33

“ORDÉNASE a la Corporación Autónoma Regional de Cundinamarca - CAR, al Departamento de Cundinamarca, al Distrito Capital y a los entes territoriales aferentes al Río Bogotá, promover de manera inmediata el uso eficiente y de ahorro del agua como elemento integrante y preponderante para la conservación y protección de los procesos hidrológicos, ecosistémicos y de biodiversidad. PREVÉNGASE a las mismas que promuevan de manera inmediata la reutilización del agua en actividades primarias y secundarias cuando el proceso técnico y económico así lo amerite y aconseje, según el análisis socioeconómico y las normas de calidad ambiental”.

Mediante AUTO DRSC-1818 de 17 de agosto de 2017 de la CAR, se aprobó el Programa de Uso Eficiente y Ahorro de agua, el cual determina, mediante concepto técnico que: “Se evidencia que el Municipio da cumplimiento con lo establecido en la Ley 373 de 1997 y Resolución No. 1288 del 24 de octubre de 2002, con lo cual se aprueba la implementación de este programa”. El programa cuenta con 7 proyectos, 17 actividades y un cronograma establecido, es así como el día 14 de diciembre del año 2017 se realiza el seguimiento de actividades por parte de la CAR, en el cual se revisan los avances y actividades ejecutadas con los soportes correspondientes. Este seguimiento se soporta con AUTO DRSC No. 0337 expedido por la CAR de fecha 4 febrero de 2019, que determina “Que el programa se encuentra vigente y el programa cumple con lo planteado en el cronograma de ejecución relacionado con el acuerdo al año 1”. Finalmente, se continúa realizando las actividades que corresponde a las obligaciones de avance y cronograma establecido.

1.1.4.9.13 Orden 4.34

“ORDÉNASE al Departamento de Cundinamarca, al Distrito Capital – Empresa Acueducto y Alcantarillado de Bogotá E.A.A.B. y a los entes territoriales aferentes al Río Bogotá, garantizar de manera inmediata la sostenibilidad de la oferta del recurso hídrico a los diferentes usuarios a lo largo de la cuenca, en especial a los habitantes de los municipios de la Cuenca Baja”.

La Planta de Tratamiento de Agua Residuales de Chía, denominada “PTAR I de Chía” actualmente es operada por la empresa de servicios públicos de Chía - EMSERCHIA E.S.P; por medio de CONVENIO INTERADMINISTRATIVO NUMERO 2017 - CV - 022 suscrito entre el Municipio de Chía y la Empresa de Servicios Públicos de Chía EMSERCHIA ESP.

Actualmente se encuentra en construcción la planta de tratamiento de aguas residuales del municipio de chía, Cundinamarca - PTAR chía II conforme al convenio interadministrativo de asociación no. 1267 de 2015 entre la corporación autónoma regional de Cundinamarca - car, el municipio de chía departamento de Cundinamarca y la empresa de servicios públicos de chía Emserchía E.S.P la cual se espera inicie operación en el 2020.
1.1.4.9.14 Orden 4.56

“ORDÉNASE al Distrito Capital - Empresa de Acueducto y Alcantarillado de Bogotá E.A.A.B. E.S.P. y a los entes territoriales aferentes al Río Bogotá, para que en el término perentorio e improrrogable de seis (6) meses contados a partir de la ejecutoria de esta sentencia, elabore el plan de rehabilitación de redes a que se hace referencia en el numeral 4.19”.

Dando cumplimiento a esta orden se han realizado obras de reposición de tuberías en varios sectores del municipio, construcción de colectores, construcción de alcantarillado, entre otros.

1.1.4.9.15 Orden 4.57

“ORDÉNASE a la Corporación Autónoma Regional de Cundinamarca – CAR y al Departamento de Cundinamarca que cofinancien con los municipios de la Cuenca Alta en un término perentorio e improrrogable de tres (3) años contados a partir de la ejecutoria de la sentencia, la construcción, optimización y estandarización de los sistemas de tratamiento de aguas residuales municipales así como la asistencia técnica y administrativa, de manera que se cumpla con la regulación de vertimientos a cuerpos de agua, este hecho lo deberá acreditar y comunicar al juez de instancia so pena de incurrir en desacato a Orden judicial.

PREVÉNGASE a los entes territoriales que garanticen el mejor manejo operacional de los sistemas de tratamiento de aguas residuales, de manera que se cumpla la legislación de vertimientos. Los costos de operación deberán ser incluidos en las tarifas de acuerdo con la Resolución 287 de 25 de mayo 2004 “por la cual se establece la metodología tarifaria para regular el cálculo de los costos de prestación de los servicios de acueducto y alcantarillado” y la Circular 001 de 31 de octubre 2013 “Incorporación del costo de operación de tratamiento de aguas residuales (ctr) en el costo medio de operación particular del prestador en alcantarillado”, ambas de la CRA”.

Al respecto de la PTAR I el municipio en el año 2015 realizó una operación de crédito público vía leasing, para la financiación del proyecto “Optimización, diseño y construcción de la planta de tratamiento de aguas residuales PTAR Chía I Delicias Sur”, proyecto que ha sido objeto de acciones judiciales por su incumplimiento, que hoy hacen imposible su ejecución; como se manifiesta en el auto que resuelve el incidente Auto 078 de 2019. Acatando órdenes de la magistrada Nelly Villamizar, se dejaron apropiados los recursos para la vigencia 2020, en el acápite de los Gastos de Inversión, en el Sector de Desarrollo Regional, en el Programa Región Sostenible, dentro del Proyecto denominado: “Estudios, diseños, construcción y puesta en marcha de la nueva planta de tratamiento de aguas residuales PTAR CHIA I”, por la suma de $4.031.985.221,00.

Adicionalmente, en enero de 2020 se firmó un acta de intención de un compromiso interadministrativo destinado a cumplir la sentencia del río Bogotá entre el municipio de Chía y la CAR en el marco de las mesas de concertación, con el fin de financiar el proyecto de construcción de la PTAR I.

En relación con la PTAR II de Chía, como fue mencionado anteriormente, se encuentra en construcción y se espera que inicie operación en el 2020.

1.1.4.9.16 Orden 4.58

“ORDÉNASE a la Corporación Autónoma Regional de Cundinamarca – CAR, al Departamento de Cundinamarca, al Distrito Capital y a los entes territoriales de la cuenca aferente al Río Bogotá, que en el término perentorio e improrrogable de doce (12) meses contados a partir de la ejecutoria de esta sentencia, adopten todas y cada una de las medidas administrativas y económicas relacionadas con el incremento de operativos de control, de muestreo y contra-muestreo de la actividad industrial y agropecuaria de la cuenca hidrográfica del Río Bogotá”.
El seguimiento a vertimientos lo realiza la CAR, y de igual forma la SDMA participa en dicho seguimiento. Adicionalmente la SDMA realiza seguimiento por medio de actividades relacionadas con contaminación visual, manejo de aguas residuales, contaminación atmosférica, seguimiento a rellenos, seguimiento a vallados, conceptos ambientales para desarrollo urbanístico, seguimiento a explotaciones pecuarias, contaminación por ruido.

1.1.4.9.17 Orden 4.71

“ORDÉNASE al Ministerio de Educación Nacional, al Distrito Capital - Secretaría de Educación y a los municipios de la cuenca hidrográfica del Río Bogotá que en el término perentorio e improrrogable de seis (6) meses contados a partir de la ejecutoria de esta providencia, incluir en los Proyectos Ambientales Escolares - PRAES - el capítulo de reciclaje”.

“ORDÉNASE al Ministerio de Educación Nacional, al Distrito Capital - Secretaría de Educación y a los municipios de la cuenca hidrográfica del Río Bogotá, expedir en el término perentorio e improrrogable de seis (6) meses contados a partir de la ejecutoria de esta providencia, el programa educativo para los recicladores y diseñar una campaña para crear conciencia en la ciudadanía, de acuerdo con la parte motiva”.

Se ha venido realizando acompañamiento a las instituciones educativas en la adopción de los PRAES, realizando capacitaciones y diferentes estrategias pedagógicas. Se han realizado campañas de reciclaje, socializaciones, capacitaciones y diversas estrategias pedagógicas con los recuperadores ambientales del municipio.

1.1.4.9.18 Orden 4.72

“ORDÉNASE a la Corporación Autónoma Regional de Cundinamarca – CAR, al Departamento de Cundinamarca al Distrito Capital, a los entes territoriales aferentes al Río Bogotá y a todos los habitantes de la cuenca hidrográfica, realizar jornadas cívicas para conmemorar el día mundial del agua que se celebra el 22 de marzo, tales como la limpieza de rondas, siembra de árboles, ciclopaseos, exposiciones y, en general actividades lúdicas, ambientales y ecológicas que involucren a los niños y jóvenes”.

Se han realizado diferentes jornadas de conmemoración del día del agua, en las que se ha realizado siembra de árboles, entre otras actividades ambientales.

1.1.5 Hidrogeología

De acuerdo con SDMA (2017), las formaciones presentes en el municipio tienen un uso extractivo dirigido a materiales de construcción por la presencia de recebo y arenas en las formaciones Plaeners, Arenisca y Labor-Tierna. No obstante, su importancia radica en la presencia de los acuíferos de la formación Guadalupe, considerados de gran interés hidrogeológico con una porosidad de 9%. En el nivel superior se encuentran las areniscas cuarzosas más productoras de agua por porosidad primaria (Labor-Tierna), mientras que el nivel inferior la capacidad de almacenamiento de agua se aumenta por las fracturas (Arenisca Dura, Plaeners).

Los depósitos cuaternarios de la planicie presentan conectividad en todos los poros de los sedimentos, con alta porosidad efectiva respecto al flujo del agua. Estos sedimentos no consolidados son considerados de poca a moderada importancia hidrogeológica.

En el municipio se encuentran inventariados 246 pozos de agua subterránea, de los cuales 94 están en uso y 152 se encuentran abandonados, no existen, obstruídos, en reserva, secos, sellados, sin acceso o sin información (Consorcio Huitaca, 2017).
Tabla 15. Inventario pozos de agua subterránea

<table>
<thead>
<tr>
<th>Estado del pozo</th>
<th>Mercedes de Calahorra</th>
<th>Bojacá</th>
<th>Fagua</th>
<th>Fonquetá</th>
<th>Fusca</th>
<th>La Balsa</th>
<th>Tiquiza</th>
<th>Yerbabuena</th>
<th>Zona Urbana</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>En uso</td>
<td>3</td>
<td>36</td>
<td>23</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>94</td>
</tr>
<tr>
<td>Abandonado</td>
<td>1</td>
<td>36</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>No existe</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Obstruido</td>
<td>-</td>
<td>3</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>Reserva</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>Seco</td>
<td>-</td>
<td>5</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>13</td>
<td>-</td>
<td>6</td>
<td>28</td>
<td>52</td>
</tr>
<tr>
<td>Sellado</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Sin acceso</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Sin información</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
<td>94</td>
<td>48</td>
<td>4</td>
<td>12</td>
<td>32</td>
<td>24</td>
<td>11</td>
<td>13</td>
<td>246</td>
</tr>
</tbody>
</table>

Fuente: Consorcio Huitaca (2017)

1.1.5.1 Unidades Hidrogeológicas

Las unidades hidrogeológicas en Chía se clasifican en Acuíferos de Gran Importancia Hidrogeológica-AGIH, Acuíferos de Moderada Importancia Hidrogeológica-AMIH, Acuíferos de Poca Importancia Hidrogeológica-APIH y Acuifugas es decir, sedimentos y rocas con limitados recursos de aguas subterráneas (Figura 40).

Figura 40. Unidades hidrogeológicas

Fuente: Consorcio Huitaca (2017)

1.1.5.1.1 Acuifuga

Dentro de esta categoría, correspondientes a formaciones geológicas que no contienen agua en cantidades apreciables ni permiten su circulación, se clasifican los Depósitos Cono de Deyección (Qcdy) y los Depósitos Coluviales (Q2c).

- Depósito Cono de Deyección (Qcdy): Presentan una geoforma cónica o en abanico, alomada con pendientes suaves en zonas de piedemonte. El depósito presenta textura fina
hacia las partes distales y textura gruesa en la zona apical. Se encuentra en las veredas Yerbabuena y Fusca, hacia la parte baja de los cerros orientales.

- Depósitos Coluviales. (Q2c): Se componen de cantos, bloques y guijos de areniscas en una matriz arenoso arcillosa. Se encuentra distribuida en varios polígonos en los piedemonte de los cerros.

1.1.5.1.2 Acuíferos de Gran Importancia Hidrogeológica-AGIH

En Chía se compone de las unidades AGIH15 y AGIH30. La unidad AGIH15 se encuentra en la parte alta de los cerros occidentales y las partes planas del municipio. La unidad AGIH30 se localiza en los cerros orientales y el piedemonte de los cerros occidentales.

En la unidad AGIH15 se encuentran las siguientes formaciones:

- Formación. Arenisca Dura (K2d): Constituida por areniscas cuarzosas, gris claras, de grano fino, en estratificación delgada a muy gruesa, lenticular a plano paralela, con intercalaciones esporádicas de arcillolitas y limolitas. Presenta un espesor variable, el cual oscila entre 308 y 460 m para el sector de los cerros suroorientales y surooccidentales de la Sabana de Bogotá, y entre 185 y 350 m para el área occidental de la sabana. Se localiza en la zona alta de los cerros occidentales y en el extremo norte de la vereda Yerbabuena.

- Formación. Tilatá (N2t): Compuesta de capas gruesas, curviformes y onduladas, areniscas conglomeráticas, blancas, mal seleccionadas, semiconsolidados, con intercalaciones de conglomerados de cantos de areniscas, redondeados a subangulares. Se encuentra en las zonas planas del municipio.

En la unidad AGIH30 se encuentra la Formación Labor y Tierna (K2t), la cual lítológicamente consta de tres conjuntos: uno inferior conformado por areniscas cuarzosas, color gris claro, de grano fino a medio, ligeramente friables; un conjunto intermedio donde predominan arcillolitas y limolitas silíceas, y un conjunto superior constituido por areniscas cuarzosas, gris claro, de grano mediano a grueso, con estratificación cruzada, moderadamente friables, y en estratos de 0,2 a 3,0 m de espesor. Como fue mencionado anteriormente, en el municipio se localiza en los cerros orientales y el piedemonte de los cerros occidentales.

1.1.5.1.3 Acuíferos de Moderada Importancia Hidrogeológica-AMIH

En Chía se compone de las unidades AMIH10 y AMIH5.

La unidad AMIH10 se compone de la Formación Plaeners (K2p), la cual lítológicamente está constituida en la parte inferior, por capas de areniscas de grano fino, arcillolitas, limolitas silíceas, y liditas; la parte media, por una alternancia de limolitas, arcillolitas y areniscas de grano fino, y la parte superior, por limolitas y liditas. El espesor es variable y oscila entre 156 y 212 m en la parte nororiental y suroccidental de Bogotá, y entre 60 y 300 m para la región occidental y noroccidental de la sabana. En el municipio se encuentra en la parte media de los cerros occidentales y una fracción bordeando la formación arenisca dura al norte de la vereda Yerbabuena.

Por su parte, la unidad AMIH5 se compone de la Formación. Guaduas (K2E1g), la cual es una unidad representada en 5 segmentos (A, B, C, D y E). Hacia la base presentan capas gruesas de arcillolitas grises, intercaladas con lodolitas carbonosas negras. Hacia la parte media capas medias a gruesas de arcillolitas de color violeta, amarillo o marrón, intercaladas con capas de carbón. El tope de la unidad presenta capas muy gruesas de arcillolitas localmente carbonosas de color marrón, gris, amarillo y violeta. Se encuentra en la parte baja de la vereda Yerbabuena.
1.1.5.1.4 Acuíferos de Poca Importancia Hidrogeológica-APIH

Corresponde a la unidad APIH2, compuesta por las siguientes formaciones:

- Depósitos Aluviales Recientes (Q2al): se localizan a lo largo de los drenajes del área, presentan material no consolidado, arenoso y limoso con escasas barras de gravas; las arenas son de granulometría variable. Se encuentran en el río Bogotá, la quebrada Honda y la quebrada Santiamén.

- Formación Chía (Q2ch): Depósitos de grano fino constituidos por sedimentos fluviales que afloran a lo largo de los ríos principales que están por debajo de las llanuras de inundación de los ríos. En Chía se encuentra en los valles aluviales del río Bogotá y del río Frío.

1.1.5.2 Zonas de recarga

Se localizan principalmente en los cerros orientales y occidentales, y en los valles aluviales del río Frío y río Bogotá, como se observa en la Figura 41.

Figura 41. Zonas de recargas de acuíferos

Fuente: Consorcio Huitaca (2017)

1.1.6 Atmósfera

1.1.6.1 Meteorología

Con el fin de caracterizar el clima del municipio se recolectó información climatológica del IDEAM y de la red hidrometeorológica de la CAR. Las estaciones utilizadas se relacionan en la Tabla 16.

Tabla 16. Estaciones climatológicas

<table>
<thead>
<tr>
<th>Estación</th>
<th>Tipo</th>
<th>Entidad</th>
<th>Coordenadas Magna Sirgas Origen Bogotá</th>
</tr>
</thead>
<tbody>
<tr>
<td>2120113</td>
<td>Almaviva</td>
<td>CAR</td>
<td>1005600 1029965</td>
</tr>
<tr>
<td>2120500135</td>
<td>Univ. Sabana</td>
<td>IDEAM</td>
<td>1004974 1028591</td>
</tr>
<tr>
<td>21205890</td>
<td>Guanata</td>
<td>IDEAM</td>
<td>1002570 1032040</td>
</tr>
</tbody>
</table>

Fuente: Información IDEAM y CAR
1.1.6.1.1 Análisis de precipitación

Gráfica 4. Precipitación Estación Almaviva

Gráfica 5. Precipitación Estación Guanata

Fuente: Elaborado a partir de información hidrometeorológica CAR

Precipitación mensual Estación Guanata

Precipitación anual Estación Guanata

1.1.6.1.2 Análisis de otras variables

No se encontraron series de más de 30 años para las variables de temperatura, brillo solar, evaporación, humedad relativa y velocidad y dirección del viento. En la Gráfica 6 se reporta la información de la estación localizada en la universidad La Sabana, en el periodo 2018-2019.
En la Figura 42 se presenta la zonificación climática, en la que se evidencia que en el municipio predomina la clasificación Frío semihúmedo, característico de alturas entre 2001 y 3000 m.s.n.m. temperaturas entre 12 °C y 17.5 °C y una relación precipitación/temperatura de 60 a 100.

Figura 42. Zonificación climática Caldas – Lang

1.1.6.2 Fuentes de emisión

De acuerdo con la SDMA (2020), en cuanto al monitoreo y seguimiento a la calidad del aire en zonas priorizadas por la Dirección de Evaluación Seguimiento y Control Ambiental (DESCA) de la Corporación Autónoma Regional de Cundinamarca (CAR) evidenció que a partir de este seguimiento, y de acuerdo con las concentraciones anuales promedio de PM$_{10}$ de las estaciones activas durante el periodo 2016 – 2019, fue posible identificar que los municipios con mayores problemas de contaminación atmosférica por material particulado son Soacha, Mochuelo, Ráquira, Cajicá y Mosquera, en donde las estaciones superaron el nivel máximo permisible de concentración para un tiempo de exposición anual (50 μg/m3).

En consecuencia y dadas las condiciones anteriormente expuestas, se produce un impacto negativo en tanto en el ambiente como en la salud humana, esto debido a que la exposición a altos niveles de contaminación del aire puede causar una variedad de resultados adversos a la salud. La contaminación del aire puede aumentar el riesgo de infecciones respiratorias, enfermedades cardiacas, accidentes cerebrovasculares y cáncer de pulmón. Tanto la exposición a corto como a largo plazo a los contaminantes del aire se ha asociado con impactos adversos en la salud. Los impactos más severos afectan a las personas que ya están enfermas. Los niños, los ancianos y los pobres son más susceptibles. Los contaminantes más nocivos para la salud, estrechamente asociados con la mortalidad prematura excesiva, son partículas finas PM 2.5 que penetran profundamente en los conductos pulmonares.
1.1.6.3 Ruido

La Corporación Autónoma Regional de Cundinamarca (CAR) por medio de licitación pública con la empresa Tekcen S.A.S, durante el periodo comprendido entre el 26 de abril de 2015 y el 31 de mayo de 2015, realizó mediciones de ruido ambiental en 100 puntos de monitoreo desplegados tanto en el casco urbano como rural del municipio de Chía y una estación meteorológica ubicada en la planta de sacrificio animal del municipio. Se contó además con un punto de monitoreo fijo, encargado de registrar niveles de ruido, las 24 horas del día que se ubicó junto a la estación de monitoreo en la planta de sacrificio animal del municipio. Se realizó la modelación de los mapas de ruido del casco urbano del municipio de Chía, considerando la normativa pertinente en gestión y control de ruido ambiental.

En la Figura 43 se presenta la localización de los puntos monitoreados, y en la Tabla 17 se presentan los resultados obtenidos, los cuales fueron comparados con los límites establecidos en la Resolución 627 del 2006, señalando en gris los valores que presentaron sobrepaso del nivel máximo permitido por la norma.

Figura 43. Localización puntos de monitoreo ruido

Tabla 17. Niveles de ruido ambiental registrados

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.871</td>
<td>-74.037</td>
<td>Diagonal al Conjunto Residencial Santa Ana de Chía</td>
<td>C</td>
<td>75.81</td>
<td>74.88</td>
<td>80</td>
<td>76.18</td>
<td>74.18</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4.880</td>
<td>-74.038</td>
<td>Avenida Principal frente a NISSAN</td>
<td>C</td>
<td>81.48</td>
<td>75.55</td>
<td>80</td>
<td>71.88</td>
<td>72.04</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4.858</td>
<td>-74.067</td>
<td>Frente a la cementera Holcim</td>
<td>C</td>
<td>80.70</td>
<td>78.86</td>
<td>65</td>
<td>76.51</td>
<td>68.57</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.855</td>
<td>-74.073</td>
<td>Vía principal Cota Chía, entrada a Fonqueta</td>
<td>C</td>
<td>78.27</td>
<td>79.92</td>
<td>80</td>
<td>74.77</td>
<td>68.49</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4.845</td>
<td>-74.041</td>
<td>Aguapanelas internacional autopista Norte</td>
<td>C</td>
<td>77.89</td>
<td>77.06</td>
<td>80</td>
<td>78.47</td>
<td>74.48</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>---------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4.890</td>
<td>-74.057</td>
<td>Casa de campo San Antonio sobre Carrera 9A a 200metros calle 29</td>
<td>C</td>
<td>77.06</td>
<td>76.15</td>
<td>80</td>
<td>64.87</td>
<td>64.14</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.875</td>
<td>-74.042</td>
<td>Calle 29 Casa #1-64</td>
<td>B</td>
<td>70.02</td>
<td>51.28</td>
<td>65</td>
<td>73.15</td>
<td>55.03</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.884</td>
<td>-74.046</td>
<td>Carrera 1 casa # 32-14</td>
<td>B</td>
<td>67.92</td>
<td>65.91</td>
<td>65</td>
<td>67.36</td>
<td>57.63</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4.878</td>
<td>-74.048</td>
<td>Calle 26 con Carrera 6 Diagonal Urbanización San Valentin</td>
<td>D</td>
<td>78.32</td>
<td>55.45</td>
<td>55</td>
<td>64.78</td>
<td>55.72</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4.875</td>
<td>-74.039</td>
<td>Calle 30 Casa #3E-07</td>
<td>B</td>
<td>70.59</td>
<td>69.38</td>
<td>65</td>
<td>63.78</td>
<td>57.79</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4.882</td>
<td>-74.044</td>
<td>Carrera 1E casa #30-43</td>
<td>B</td>
<td>70.09</td>
<td>67.36</td>
<td>65</td>
<td>53.94</td>
<td>54.58</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>4.885</td>
<td>-74.075</td>
<td>"La Pendar" cruce Tabio y La Forquetá</td>
<td>D</td>
<td>56.92</td>
<td>64.63</td>
<td>55</td>
<td>42.27</td>
<td>48.68</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.880</td>
<td>-74.077</td>
<td>Vía Tiquiza, Fagua Sector Cuatro Esquinas</td>
<td>B</td>
<td>69.18</td>
<td>60.73</td>
<td>65</td>
<td>66.77</td>
<td>57.84</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>4.869</td>
<td>-74.043</td>
<td>Carrera 1E # 24-05</td>
<td>D</td>
<td>70.13</td>
<td>65.75</td>
<td>55</td>
<td>61.76</td>
<td>68.92</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4.864</td>
<td>-74.051</td>
<td>Vereda Samaria</td>
<td>D</td>
<td>68.29</td>
<td>71.55</td>
<td>55</td>
<td>63.11</td>
<td>60.97</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4.877</td>
<td>-74.667</td>
<td>Vereda Tiquiza (Jambalo)</td>
<td>B</td>
<td>70.78</td>
<td>59.77</td>
<td>65</td>
<td>64.76</td>
<td>54.03</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>4.870</td>
<td>-74.056</td>
<td>Calle 17 # 16-68</td>
<td>B</td>
<td>56.52</td>
<td>55.54</td>
<td>65</td>
<td>56.09</td>
<td>53.14</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4.873</td>
<td>-74.072</td>
<td>Calle # 16-14B</td>
<td>B</td>
<td>71.05</td>
<td>70.74</td>
<td>65</td>
<td>57.52</td>
<td>59.51</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>4.872</td>
<td>-74.068</td>
<td>Calle 19 # 14-74</td>
<td>B</td>
<td>71.22</td>
<td>59.71</td>
<td>65</td>
<td>55.01</td>
<td>74.72</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>4.872</td>
<td>-74.062</td>
<td>Calle 21 con Carrera 11</td>
<td>B</td>
<td>74.19</td>
<td>55.62</td>
<td>65</td>
<td>50.30</td>
<td>57.83</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>4.836</td>
<td>-74.032</td>
<td>Fusca entrada a la casa 7</td>
<td>D</td>
<td>71.90</td>
<td>73.02</td>
<td>55</td>
<td>63.15</td>
<td>69.70</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4.853</td>
<td>-74.066</td>
<td>Cra 13 con Calle 17</td>
<td>B</td>
<td>72.80</td>
<td>65.49</td>
<td>65</td>
<td>71.78</td>
<td>64.80</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>4.867</td>
<td>-74.058</td>
<td>Cra 9 # 20-18</td>
<td>B</td>
<td>74.20</td>
<td>69.17</td>
<td>65</td>
<td>63.92</td>
<td>64.46</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>4.868</td>
<td>-74.054</td>
<td>Calle 21 # 5-52</td>
<td>B</td>
<td>71.49</td>
<td>65.62</td>
<td>65</td>
<td>59.13</td>
<td>59.31</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>4.867</td>
<td>-74.035</td>
<td>Cra 2E # 22-04</td>
<td>B</td>
<td>71.72</td>
<td>73.23</td>
<td>65</td>
<td>75.29</td>
<td>62.33</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>4.853</td>
<td>-74.078</td>
<td>Sector Alejandro, Vía Forquetá</td>
<td>D</td>
<td>69.89</td>
<td>75.75</td>
<td>55</td>
<td>51.72</td>
<td>45.48</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>4.853</td>
<td>-74.052</td>
<td>Calle 14 con Cra 17</td>
<td>B</td>
<td>71.72</td>
<td>71.69</td>
<td>65</td>
<td>46.81</td>
<td>66.29</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>4.872</td>
<td>-74.062</td>
<td>Calle 45 Cra 14, Barrio San Luis</td>
<td>B</td>
<td>66.71</td>
<td>65.50</td>
<td>65</td>
<td>71.65</td>
<td>67.03</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>4.853</td>
<td>-74.066</td>
<td>Cra 12 # 16-27</td>
<td>B</td>
<td>63.73</td>
<td>61.11</td>
<td>65</td>
<td>59.85</td>
<td>65.04</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>4.853</td>
<td>-74.062</td>
<td>Calle 17 con Cra 9</td>
<td>B</td>
<td>72.61</td>
<td>55.43</td>
<td>65</td>
<td>57.05</td>
<td>56.64</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>4.853</td>
<td>-74.054</td>
<td>Calle 19 con Cra 5, Frente a la casa # 5-13 (izzería Venturi)</td>
<td>B</td>
<td>67.79</td>
<td>81.04</td>
<td>65</td>
<td>50.58</td>
<td>45.37</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>4.853</td>
<td>-74.053</td>
<td>Cra 3 con Calle 20</td>
<td>B</td>
<td>69.68</td>
<td>63.71</td>
<td>65</td>
<td>53.38</td>
<td>51.85</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4.875</td>
<td>-74.036</td>
<td>Cra 1 # 19-148, Conj. Resid. Bonanova</td>
<td>B</td>
<td>69.51</td>
<td>58.55</td>
<td>65</td>
<td>58.72</td>
<td>69.38</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>4.853</td>
<td>-74.036</td>
<td>Cra 1A # 19-119 casa 55</td>
<td>B</td>
<td>59.50</td>
<td>64.24</td>
<td>65</td>
<td>59.77</td>
<td>64.79</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>4.852</td>
<td>-74.047</td>
<td>180 mts Av. Padilla # 6-59</td>
<td>C</td>
<td>73.53</td>
<td>69.29</td>
<td>80</td>
<td>74.18</td>
<td>56.05</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>4.853</td>
<td>-74.042</td>
<td>Avn. Padilla # 6-59</td>
<td>C</td>
<td>74.04</td>
<td>70.28</td>
<td>80</td>
<td>65.44</td>
<td>60.99</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>4.863</td>
<td>-74.064</td>
<td>Cra 15A # 11-51</td>
<td>B</td>
<td>60.35</td>
<td>48.56</td>
<td>65</td>
<td>48.56</td>
<td>48.78</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>4.852</td>
<td>-74.052</td>
<td>Cra 13 con Calle 13</td>
<td>B</td>
<td>76.18</td>
<td>63.81</td>
<td>65</td>
<td>54.37</td>
<td>67.55</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>4.852</td>
<td>-74.066</td>
<td>Cra 11 con Calle 14</td>
<td>B</td>
<td>66.64</td>
<td>66.56</td>
<td>65</td>
<td>68.33</td>
<td>68.79</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.852</td>
<td>-74.063</td>
<td>Casa # 8-40 Recreativa sobre Av Padilla - Diagonal al Éxito</td>
<td>C</td>
<td>77.25</td>
<td>72.24</td>
<td>80</td>
<td>51.80</td>
<td>67.54</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>-------------</td>
<td>-------------------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>4.872</td>
<td>-74.057</td>
<td>Av. Padilla Casa # 5-55 frente a panadería Pan-Pa-Ya</td>
<td>C</td>
<td>69.56</td>
<td>68.87</td>
<td>80</td>
<td>61.06</td>
<td>70.46</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>4.872</td>
<td>-74.055</td>
<td>Punto sobre avenida Padilla frente a casa # 4-105S</td>
<td>C</td>
<td>72.18</td>
<td>76.03</td>
<td>80</td>
<td>69.21</td>
<td>68.34</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>4.870</td>
<td>-74.056</td>
<td>Cra 1 # 17-47 Avenida Padilla</td>
<td>C</td>
<td>77.11</td>
<td>54.97</td>
<td>80</td>
<td>77.18</td>
<td>65.52</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>4.872</td>
<td>-74.058</td>
<td>Cra 1 # 17-47 Avenida Padilla</td>
<td>C</td>
<td>70.78</td>
<td>55.11</td>
<td>80</td>
<td>65.41</td>
<td>62.10</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>4.872</td>
<td>-74.055</td>
<td>Cra 1 # 19-55 EDS ESSO</td>
<td>C</td>
<td>73.46</td>
<td>72.78</td>
<td>80</td>
<td>73.20</td>
<td>75.53</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>4.873</td>
<td>-74.040</td>
<td>Km7 Autop. Norte</td>
<td>C</td>
<td>77.18</td>
<td>73.80</td>
<td>80</td>
<td>65.78</td>
<td>66.59</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>4.863</td>
<td>-74.035</td>
<td>Frente conj. Resd. Santa Ana frente U. La sabana</td>
<td>C</td>
<td>76.97</td>
<td>68.56</td>
<td>80</td>
<td>78.15</td>
<td>65.52</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>4.866</td>
<td>-74.075</td>
<td>Sector Fonquetá</td>
<td>D</td>
<td>62.47</td>
<td>61.07</td>
<td>55</td>
<td>62.41</td>
<td>46.67</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>4.862</td>
<td>-74.065</td>
<td>Cra 14E # 10-14</td>
<td>B</td>
<td>64.00</td>
<td>62.04</td>
<td>65</td>
<td>48.46</td>
<td>49.78</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>4.868</td>
<td>-74.070</td>
<td>Calle 10 con Cra 12 Centro</td>
<td>C</td>
<td>68.84</td>
<td>74.79</td>
<td>65</td>
<td>70.22</td>
<td>65.88</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>4.868</td>
<td>-74.066</td>
<td>Calle 11 con Cra 10. Parque Principal</td>
<td>C</td>
<td>61.93</td>
<td>64.70</td>
<td>65</td>
<td>58.11</td>
<td>49.44</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>4.865</td>
<td>-74.062</td>
<td>Calle 12 Casa # 7- 44, Frente a Efecty Barrio Centro</td>
<td>C</td>
<td>71.87</td>
<td>69.40</td>
<td>65</td>
<td>53.41</td>
<td>68.35</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>4.538</td>
<td>-74.059</td>
<td>Avn Pradilla. Frente al Municipal de recreación y Deporte # 6-94</td>
<td>C</td>
<td>72.81</td>
<td>70.53</td>
<td>80</td>
<td>70.49</td>
<td>62.84</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>4.867</td>
<td>-74.056</td>
<td>Calle 13 con Cra 4 # 4-72. Barrio La Cascada</td>
<td>B</td>
<td>68.84</td>
<td>65.24</td>
<td>65</td>
<td>57.04</td>
<td>66.65</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>4.867</td>
<td>-74.036</td>
<td>Frente al Conj. Resd. Quintas del Parque</td>
<td>B</td>
<td>58.41</td>
<td>68.47</td>
<td>65</td>
<td>61.15</td>
<td>68.40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>4.868</td>
<td>-74.057</td>
<td>Calle 16A # 1-13</td>
<td>C</td>
<td>78.27</td>
<td>74.52</td>
<td>80</td>
<td>70.49</td>
<td>73.21</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>4.863</td>
<td>-74.053</td>
<td>col 5A # 14A-10</td>
<td>B</td>
<td>67.28</td>
<td>85.17</td>
<td>65</td>
<td>66.61</td>
<td>56.78</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>4.858</td>
<td>-74.063</td>
<td>Cra 12 Calle 6</td>
<td>C</td>
<td>69.66</td>
<td>74.16</td>
<td>65</td>
<td>49.29</td>
<td>61.35</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>4.858</td>
<td>-74.062</td>
<td>Cra 11 # 6-79</td>
<td>C</td>
<td>65.70</td>
<td>67.66</td>
<td>65</td>
<td>44.07</td>
<td>62.69</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>4.865</td>
<td>-74.056</td>
<td>Cra 9 Calle 9, Barrio Tranquilidad</td>
<td>C</td>
<td>63.04</td>
<td>70.90</td>
<td>65</td>
<td>63.28</td>
<td>59.48</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>4.865</td>
<td>-74.051</td>
<td>cra 7 # 10-13</td>
<td>C</td>
<td>79.75</td>
<td>69.49</td>
<td>65</td>
<td>44.57</td>
<td>46.28</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>4.864</td>
<td>-74.059</td>
<td>Cra 5 con Calle 1, Frente al Conj. Resd. El Refugio</td>
<td>B</td>
<td>65.99</td>
<td>70.86</td>
<td>65</td>
<td>67.72</td>
<td>66.49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>4.865</td>
<td>-74.055</td>
<td>Calle 12 # 3-14, Frente a Conj. Resd. Villa Laura</td>
<td>B</td>
<td>67.50</td>
<td>64.72</td>
<td>65</td>
<td>53.62</td>
<td>69.37</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>4.864</td>
<td>-74.050</td>
<td>Cra 1C 13 # 10. Conj. Resd. Costa Rica 3</td>
<td>B</td>
<td>68.38</td>
<td>55.43</td>
<td>65</td>
<td>52.80</td>
<td>63.92</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>4.857</td>
<td>-74.065</td>
<td>Calle 5A # 12-85</td>
<td>B</td>
<td>60.71</td>
<td>64.00</td>
<td>65</td>
<td>59.98</td>
<td>47.88</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>4.856</td>
<td>-74.061</td>
<td>Cra 10 # 5A/B - 69</td>
<td>C</td>
<td>72.20</td>
<td>70.72</td>
<td>65</td>
<td>64.74</td>
<td>49.89</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>4.855</td>
<td>-74.061</td>
<td>Calle 5B # 8-05</td>
<td>B</td>
<td>68.35</td>
<td>61.84</td>
<td>65</td>
<td>54.77</td>
<td>46.50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.861</td>
<td>-74.063</td>
<td>Cra 6 Casa # 7-13</td>
<td>B</td>
<td>65.15</td>
<td>73.31</td>
<td>65</td>
<td>57.05</td>
<td>67.68</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>4.861</td>
<td>-74.059</td>
<td>Cra 4 con Calle 9, Frente a la Casa # 3-73</td>
<td>B</td>
<td>71.96</td>
<td>72.93</td>
<td>65</td>
<td>58.12</td>
<td>65.27</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>4.862</td>
<td>-74.036</td>
<td>Cra 12 # 19-40</td>
<td>C</td>
<td>65.02</td>
<td>66.55</td>
<td>65</td>
<td>59.54</td>
<td>59.37</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>------------</td>
<td>--</td>
<td>------------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>4.854</td>
<td>-14.069</td>
<td>Sector cerca de Piedra por detrás de Calamarí</td>
<td>D</td>
<td>63.19</td>
<td>64.92</td>
<td>55</td>
<td>59.72</td>
<td>44.69</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>4.860</td>
<td>-74.084</td>
<td>Vereda cerca de Piedra por detrás de la Ruana</td>
<td>C</td>
<td>69.89</td>
<td>68.73</td>
<td>80</td>
<td>81.49</td>
<td>44.96</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>4.856</td>
<td>-74.079</td>
<td>Vereda cerca de piedra. Sector santa Bárbara</td>
<td>B</td>
<td>69.66</td>
<td>81.89</td>
<td>65</td>
<td>43.63</td>
<td>58.25</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>4.858</td>
<td>-74.052</td>
<td>Calle 4 # 11-07</td>
<td>B</td>
<td>76.75</td>
<td>64.07</td>
<td>65</td>
<td>58.54</td>
<td>48.56</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>4.859</td>
<td>-74.052</td>
<td>calle 5A # 10A-07</td>
<td>B</td>
<td>66.23</td>
<td>61.19</td>
<td>65</td>
<td>52.03</td>
<td>69.51</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>4.854</td>
<td>-74.059</td>
<td>Calle 5A # 6-133 Casa 2</td>
<td>B</td>
<td>70.67</td>
<td>64.84</td>
<td>65</td>
<td>65.53</td>
<td>62.35</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>4.855</td>
<td>-74.082</td>
<td>Cra 4 # 5A-36, Frente a Conj. Resd. La Pioa</td>
<td>C</td>
<td>70.37</td>
<td>61.13</td>
<td>65</td>
<td>64.56</td>
<td>60.99</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>4.859</td>
<td>-74.058</td>
<td>Calle 7 con Cra 3</td>
<td>B</td>
<td>66.66</td>
<td>75.78</td>
<td>65</td>
<td>66.66</td>
<td>67.33</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>4.857</td>
<td>-74.055</td>
<td>Calle 7 # 2-75, Conj. Resd. Los Nogales</td>
<td>B</td>
<td>63.00</td>
<td>74.07</td>
<td>65</td>
<td>59.57</td>
<td>65.33</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>4.855</td>
<td>-74.036</td>
<td>Calle 7A # 1-20</td>
<td>C</td>
<td>77.87</td>
<td>76.23</td>
<td>65</td>
<td>71.17</td>
<td>69.79</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>4.857</td>
<td>-74.035</td>
<td>Calle 9A con 3 este</td>
<td>B</td>
<td>63.56</td>
<td>68.44</td>
<td>65</td>
<td>64.11</td>
<td>47.21</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>4.854</td>
<td>-74.072</td>
<td>Cerca de piedra Ploërez el cacique</td>
<td>C</td>
<td>79.18</td>
<td>75.63</td>
<td>80</td>
<td>46.18</td>
<td>47.13</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>4.852</td>
<td>-74.052</td>
<td>Calle 1A # 10-108</td>
<td>B</td>
<td>61.99</td>
<td>63.04</td>
<td>65</td>
<td>61.82</td>
<td>68.87</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4.852</td>
<td>-74.062</td>
<td>Calle 7A con Avn frente a EDS Riomax</td>
<td>C</td>
<td>75.99</td>
<td>81.21</td>
<td>80</td>
<td>60.13</td>
<td>71.80</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>4.852</td>
<td>-74.067</td>
<td>Calle 2 # 5B-28 Frente a chimeneas, Alarcón Fábrica</td>
<td>C</td>
<td>75.34</td>
<td>62.54</td>
<td>80</td>
<td>59.15</td>
<td>64.25</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>4.852</td>
<td>-74.063</td>
<td>Conj. Resd. Virginia; Cra 4 con Calle 4</td>
<td>B</td>
<td>72.95</td>
<td>65.10</td>
<td>65</td>
<td>59.59</td>
<td>61.40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>4.850</td>
<td>-74.051</td>
<td>cr 4 # 4-26</td>
<td>B</td>
<td>69.06</td>
<td>64.32</td>
<td>65</td>
<td>51.44</td>
<td>59.52</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4.852</td>
<td>-74.052</td>
<td>Cra 1A # 5A-85, Frente a la tienda el Veleño</td>
<td>C</td>
<td>68.80</td>
<td>73.91</td>
<td>65</td>
<td>55.45</td>
<td>52.75</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>4.850</td>
<td>-74.050</td>
<td>Avn Principal - Frente a SPA Car Wash</td>
<td>C</td>
<td>77.18</td>
<td>75.97</td>
<td>80</td>
<td>44.96</td>
<td>74.50</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>4.845</td>
<td>-74.066</td>
<td>Cra 10 # 0-125, Día al Colegio Montemaral</td>
<td>D</td>
<td>69.68</td>
<td>68.22</td>
<td>55</td>
<td>70.13</td>
<td>64.02</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>4.849</td>
<td>-74.060</td>
<td>Cra 5 # 7-7 (Day Care Center)</td>
<td>B</td>
<td>74.96</td>
<td>78.37</td>
<td>65</td>
<td>62.30</td>
<td>61.90</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>4.836</td>
<td>-74.059</td>
<td>Avn Principal - Frente a la EDS TERPEL - Gazel</td>
<td>C</td>
<td>75.30</td>
<td>72.60</td>
<td>80</td>
<td>64.20</td>
<td>68.45</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>4.836</td>
<td>-74.054</td>
<td>Calle 15 # 19-18 Codensa</td>
<td>B</td>
<td>68.34</td>
<td>65.59</td>
<td>65</td>
<td>58.40</td>
<td>54.86</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>4.835</td>
<td>-74.050</td>
<td>Vereda La Balsa</td>
<td>D</td>
<td>62.25</td>
<td>58.77</td>
<td>55</td>
<td>61.17</td>
<td>45.49</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>4.845</td>
<td>-74.066</td>
<td>Vereda La Balsa, Vía Guaymaral, Frente al Conj. El Recreo sobre la Cra 10</td>
<td>D</td>
<td>63.57</td>
<td>62.57</td>
<td>55</td>
<td>61.20</td>
<td>64.47</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>4.848</td>
<td>-74.060</td>
<td>Calle 1 Sur # 4-13</td>
<td>B</td>
<td>73.98</td>
<td>71.55</td>
<td>65</td>
<td>53.14</td>
<td>65.22</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>4.842</td>
<td>-74.067</td>
<td>Cra 10 Diag. 9 (Pet Store)</td>
<td>D</td>
<td>72.13</td>
<td>70.01</td>
<td>55</td>
<td>67.29</td>
<td>56.17</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>4.846</td>
<td>-74.062</td>
<td>Frente al Conj. Resd. Palo Amarillo</td>
<td>D</td>
<td>76.70</td>
<td>59.79</td>
<td>55</td>
<td>61.56</td>
<td>62.34</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>4.845</td>
<td>-74.057</td>
<td>Cra 2 Frente a la Casa # 2-76</td>
<td>B</td>
<td>75.20</td>
<td>61.94</td>
<td>65</td>
<td>50.23</td>
<td>64.21</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>4.841</td>
<td>-74.060</td>
<td>Frente al campo de tejo El Recuerdo</td>
<td>D</td>
<td>75.32</td>
<td>63.86</td>
<td>55</td>
<td>57.74</td>
<td>61.59</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: CAR (2015)
En la Figura 44 se presentan los resultados de las modelaciones de ruido realizadas para los horarios diurno y nocturno, durante día hábil y día no hábil (dominical).

Figura 44. Mapas de ruido

Según CAR (2015), para efectos de comparación de los resultados de presión sonora, con los niveles máximos permisibles para ruido ambiental según la Res 0627/2006, los usos de suelo contemplados en este informe fueron:

- Sector B. Tranquilidad y ruido moderado. Con uso de suelo para residencial, educativo y parques urbanos
- Sector C. Ruido Intermedio Restringido: Con uso de suelo para comercio, área institucional y vías principales
- Sector D. Zona Suburbana o Rural de Tranquilidad y Ruido Moderado

En los resultados obtenidos por los mapas de ruido, se observaron sectores con alta excedencia de los niveles máximos permisibles de acuerdo con su respectivo uso de suelo. Dichos sectores estuvieron representados en los siguientes puntos de monitoreo.

- Jornada Ordinaria-Diurno: Punto 9, clasificado como Rural habitada destinada a explotación agropecuaria, dentro del Sector D. Zona Suburbana o Rural de Tranquilidad y Ruido Moderado, registró un nivel continuo equivalente LAeq de 78.3 dBA, excediendo en un 42% el nivel máximo permitido para dicho sector.
- Jornada Dominical-Diurno: Punto 26, clasificado como Rural habitada destinada a explotación agropecuaria, dentro del Sector D., presentó un nivel de presión sonora de 75.75 dBA con excedencia del 38% con respecto al estándar permisible de la Res 0627 para Sector D.
- Jornada Ordinaria-Nocturno: Punto 90, clasificado dentro del Sector D. Sector D. Zona Suburbana o Rural de Tranquilidad y Ruido Moderado, subsector de Residencial Suburbana, donde se presentó un nivel de ruido de 70.13 dBA, sobrepasando un 56% lo máximo permitido para este sector.
- Jornada Dominical-Nocturno: Punto 21, clasificado como Rural habitada destinada a explotación agropecuaria, dentro del Sector D. Zona Suburbana o Rural de Tranquilidad y Ruido, el cual registró un nivel de 69.70 dBA, que representa una excedencia del 55% con respecto al estándar permisible para el Sector D.

Los mapas de ruido revelan que la fuente predominante de ruido en el municipio es el tráfico de vehículos que se movilizan tanto por las vías, tales como las vías Chía - Cajicá, Tenjo, Tabio y Cota, y teniendo en cuenta los resultados del aforo vehicular y el conteo realizado, se podría atribuir la mayor parte del ruido de tráfico a los automóviles.

También cabe destacar que otras fuentes destacables y observadas en los mapas de ruido, fueron, los establecimientos comerciales quienes hacen uso y empleo de equipos de sonido con fines publicitarios, pero con unos niveles que son bastante altos.

Los resultados obtenidos de la medición de ruido ambiental, soportado por los mapas de ruido y las observaciones en campo, demostraron la problemática de ruido ambiental existente, ya que el porcentaje de sectores que registraron niveles que excedían los niveles permitidos y que por ende incumplieran la norma, son considerablemente altos; se puede observar claramente que en el horario nocturno este porcentaje es bastante alto, sobre todo en la jornada ordinaria, donde el 80% del total de puntos de monitoreo registraron niveles que incumplen el máximo permisible, y que en jornada dominical desciende a 74% incumplimiento, observando que solo en 6 puntos los niveles disminuyen lo suficiente como para cumplir la norma. Este alto porcentaje de incumplimiento se puede estar dado por la alta restricción que presenta la Res 0627/2006 en el horario nocturno.

Por otro lado, en el horario diurno estos porcentajes de incumplimiento, son más bajos, casi manejando una relación de 50-50 entre cumplimiento e incumplimiento, donde se destaca la jornada diurna con el mayor porcentaje de incumpliendo, con un porcentaje del 65%, mientras que en la jornada dominical este porcentaje descendió al 56%, descenso que puede ser provocado por el cambio de jornada, donde el flujo vehicular es menor y algunos establecimientos no operan los domingos, factor que hace que los niveles de presión sonora descendan y ayuden a disminuir el impacto de ruido hacia los habitantes de Chía.

El 65% de las zonas de medición de ruido ambiental presentan criticidad alta, ya que no cumplieron el estándar máximo permisible en su uso de suelo respectivo para ninguno de los horarios y jornadas de evaluación.

1.1.7 Cambio climático

1.1.7.1 Etapa preliminar

En esta etapa se reconocen las condiciones predominantes del clima y se identifica su relación con los modos de vida tales como aspectos culturales, actividades económicas, agua y recursos naturales, ecosistemas y biodiversidad.

A continuación, se presenta la caracterización general del municipio de Chía, de acuerdo con el Sistema de Estadísticas Territoriales TerriData del Departamento Nacional de Planeación, según lo sugerido en el documento (Minambiente, 2018).

<table>
<thead>
<tr>
<th>Código DANE: 25175</th>
<th>Región: Centro Oriente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subregión (SGR): Sabana Centro</td>
<td>Entorno de Desarrollo (DNP): Robusto</td>
</tr>
<tr>
<td>Categoría Ley 617 de 2000: 1</td>
<td>Superficie: 76 Km² (7.600 Ha)</td>
</tr>
<tr>
<td>Población: 138,822 Habitantes</td>
<td>Densidad Poblacional: 1,826,61 Hab / Km²</td>
</tr>
</tbody>
</table>
1.1.7.1.1 Demografía y población

La caracterización de la población se desarrolla en la Dimensión Sociocultural del documento de diagnóstico.

1.1.7.1.2 Aspectos culturales

Las prácticas culturales tradicionales en el municipio de Chía, como, por ejemplo, las tradiciones indígenas y campesinas, no han desaparecido, pero han estado expuestas a los cambios que imprime la dinámica urbana. Su población ha experimentado cambios culturales ligados a la reconfiguración del territorio, la urbanización y suburbanización del municipio y la tercerización de la economía, dada la intensificación e interdependencia de las relaciones con la ciudad de Bogotá y otros procesos económicos y administrativos en la región (SDMA, 2017).

Las estrategias adoptadas en el Plan Decenal de Cultura 2015 – 2024 contemplan la Cultura ciudadana, Centros interactivos veredales, Eventos culturales y Protección del patrimonio.

El municipio cuenta con sitios de interés cultural que pueden verse impactados por los efectos del cambio climático y la variabilidad climática como, por ejemplo:

- Parque Natural La Montaña del Oso
- Puente del Común
- Castillo Marroquín
- Parroquia de Santa Lucía
- Capilla de Nuestra Señora de la Valvanera
- Estación de ferrocarril La Caro
- Biblioteca Pública Municipal HOQABIGA

1.1.7.1.3 Actividades económicas

Las actividades económicas se detallan en la Dimensión Económica del documento de diagnóstico.

1.1.7.1.4 Agua y recursos naturales

El sistema hidrográfico de Chía está definido por los valles del río Frío (occidente) y el del río Bogotá (oriente), cada uno de estos delimita las principales unidades hidrográficas del municipio con aportes de agua desde cuencas más pequeñas que nacen en los cerros y confluyen en el valle. Estas cuencas provisionan y regulan el agua en el municipio para los ecosistemas y la biodiversidad que albergan, junto a los pobladores urbanos-rurales que aún hacen uso de la misma y de las actividades socioeconómicas y culturales que desarrollan.

El sistema hídrico municipal comprende principalmente las quebradas que aún mantienen su carácter permanente, los drenajes naturales de agua alimentados por agua lluvia y formados por las características topográficas de la superficie, las chucuas o drenajes artificiales, los reservorios de agua, y los relictos de humedal ubicados en los planos de inundación del río Bogotá. El nacimiento de las quebradas y los drenajes naturales se ubica en las inmediaciones o aguas abajo de la RFPP Cuenca Alta Río Bogotá, junto a la Reserva Forestal Protectora del Bosque Oriental Bogotá.

Los cuerpos de agua del municipio se concentran principalmente en la cuenca del río Bogotá, sobre los cerros orientales, mientras que en la cuenca del río Frío predominan las chucuas (SDMA; 2017).

El municipio ha evidenciado eventos de inundación atribuibles a la variabilidad climática (fenómeno de La Niña), por lo cual el recurso hídrico superficial puede convertirse en una amenaza para la integridad de las personas e infraestructura si no se realiza una adecuada gestión y conservación.
de este, como protección de la ronda hídrica, que para el municipio de Chía es aún más exigente que la requerida por la normatividad, reforestación, adecuación hidráulica, entre otros.

1.1.7.1.5 Ecosistemas y biodiversidad

De acuerdo con el Mapa de ecosistemas continentales, costeros y marinos de Colombia escala 1:100.000, en Chía existen 13 ecosistemas generales distribuidos en 3 grandes biomas. Solo 3 de esos ecosistemas generales corresponden a ecosistemas naturales o con poca transformación, ocupan el 20,0% de la superficie del municipio y corresponden a los hábitats en los cuales se desarrolla la vegetación y la fauna; el 80% restante del municipio corresponde a sistemas transformados dónde dominan los territorios artificializados (27,7%), los agroecosistemas ganaderos (19,4%) y transicional transformado (16,8%). Este último ecosistema corresponde a lugares con mal drenaje, encharcamiento permanente o con un prolongado periodo de inundación debido a los ciclos hidrológicos del río Bogotá, pero que han estado sujetos a procesos de transformación ya sea por actividades agropecuarias o por construcciones e infraestructuras. Este terreno, en condiciones naturales debería estar ocupado por ecosistemas como humedales y bosques riparios (SDMA, 2017).

Los ecosistemas de bosque, presentes en la zona de reserva forestal del municipio, son vulnerables ante la variabilidad climática, ya que el fenómeno de El Niño puede incrementar la probabilidad de incendios forestales, y el fenómeno de La Niña puede generar eventos de remoción en masa en las zonas de mayores pendientes.

En cuanto a los humedales Minambiente (2018), establece que estos como elementos constitutivos de la estructura ecológica principal resultan claves en los análisis de vulnerabilidad. El control de inundaciones es un servicio ecosistémico brindado por los sistemas de humedales que resulta fundamental para los procesos de adaptación al cambio climático basada en ecosistemas, el cual se encuentra enmarcado en la lógica del ordenamiento territorial desde la gestión de mecanismos para dar cumplimiento con las determinantes ambientales de riesgo de desastres por fenómenos asociados con variabilidad climática.

1.1.7.2 Valoración de impacto frente al cambio climático

1.1.7.2.1 Perfil climático

La caracterización de los caudales y niveles para las estaciones Pte Cacique (Río Frío) y La Balsa (Río Bogotá) se presenta en el numeral 1.1.4.6.

Adicionalmente Chía cuenta con un sistema de monitoreo municipal de caudales sobre los ríos Frío y Bogotá. Sobre el río Frío se encuentran las estaciones Puente Peralta, Darién, Emserchía y Vivero Municipal y sobre el río Bogotá se monitorean los niveles en los puntos Club Hato Grande, U Gran Colombia y Vivero Mongibello.

La información climática se presenta en el numeral 1.1.6.1.

1.1.7.2.2 Escenarios de cambio climático

De acuerdo con la guía del Ministerio de Ambiente (2018), “el ordenamiento territorial debe afrontar los retos que surgen con la gestión del cambio climático para orientar adecuadamente el desarrollo resiliente al clima y bajo en carbono. De continuar la tendencia mundial de cambio climático asociado a los gases de efecto invernadero, en Colombia entre los años 2011 y 2040 la temperatura media anual aumentará gradualmente en 0.9°C en el continente, y la temperatura marina aumentará en promedio 0.5° en el Caribe y 0.7° en el Pacífico. Entre los años 2041 y 2070 la temperatura media anual aumentará gradualmente en 1.6°C en el continente, y la temperatura
marina aumentará en promedio 0.85° en el Caribe y 1.2° en el Pacífico. Entre los años 2071 y 2100 la temperatura media anual aumentará gradualmente en 2.14°C en el continente, y la temperatura marina aumentará en promedio 1.6° en el Caribe y 2.0° en el Pacífico."

Los escenarios de cambio climático para el país corresponden a una representación del clima futuro bajo diferentes concentraciones de gases de efecto invernadero y aerosoles en la atmósfera. Estos escenarios, que son desarrollados por el Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM, refieren los cambios en los promedios de temperatura, precipitación y ascenso en el nivel del mar haciendo un acercamiento territorial. Los escenarios de la Tercera Comunicación Nacional están disponibles para los rangos comprendidos entre los años 2011-2040, 2041-2070 y 2071-2100, lo cual debe tenerse en cuenta según la temporalidad del instrumento de ordenamiento de tres periodos constitucionales (12 años).

Los escenarios de cambio climático para Chía (Figura 45 a Figura 52), tomados de la Tercera Comunicación Nacional, estiman para los diferentes periodos, cambios en la temperatura y la precipitación según lo descrito en la Tabla 18:

<table>
<thead>
<tr>
<th>Escenario</th>
<th>Temperatura</th>
<th>Precipitación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Línea base 1976-2005</td>
<td>Se encuentran en un rango de 11 a 14 °C, indicando piso térmico frío.</td>
<td>Se encuentran en un rango de 1001 a 2000 mm</td>
</tr>
<tr>
<td>2011-2040</td>
<td>Aumentos en la temperatura hasta 0,8 °C, considerado como un cambio bajo medio, según lo propuesto por el IDEAM (2015).</td>
<td>Aumentos en la precipitación entre el 21 y el 40%, con valores máximos en la vereda Yerbabuena, indicando exceso y exceso severo.</td>
</tr>
<tr>
<td>2041-2070</td>
<td>Incrementos en la temperatura hasta 1,2 °C, que representa un cambio medio.</td>
<td>Aumentos en la precipitación entre el 11 y el 40%, con valores máximos en la vereda Yerbabuena, indicando exceso y exceso severo.</td>
</tr>
<tr>
<td>2071-2100</td>
<td>Aumentos hasta 1.6 °C, que sugieren un cambio medio alto.</td>
<td>Aumentos en la precipitación hasta el 30%, en todo el municipio, indicando exceso.</td>
</tr>
</tbody>
</table>

Fuente: Elaborado a partir de información IDEAM (2015)
• Escenarios de cambio en la temperatura

Figura 45. Temperatura de referencia 1976 – 2005

Figura 46. Escenario Temperatura 2011 – 2040

Fuente: Elaborado a partir de información IDEAM
Figura 47. Escenario Temperatura 2041 – 2070

Fuente: Elaborado a partir de información IDEAM

Figura 48. Escenario Temperatura 2071 – 2100

Fuente: Elaborado a partir de información IDEAM
Escenarios de cambio en la precipitación

Figura 49. Precipitación de referencia 1976 – 2005

Figura 50. Escenario precipitación 2011 – 2040

Fuente: Elaborado a partir de información IDEAM
Figura 51. Escenario precipitación 2041 – 2070

Figura 52. Escenario precipitación 2071 – 2100

Fuente: Elaborado a partir de información IDEAM
1.1.7.3 Valoración de impacto frente a la variabilidad climática - Fenómenos El Niño, La Niña – Oscilación del Sur

De acuerdo con IDEAM (2014), la variabilidad climática hace referencia a los cambios en el clima descritos en periodos de tiempo cortos (menores a 30 años), cambios estacionales anuales (estaciones secas – lluviosas), interestacionales (periodos entre estaciones secas o de lluvia), interanuales e interdecenales. Los fenómenos El Niño y La Niña, son fases dentro del Ciclo de Oscilación del Sur (ENOS), característicos de la variabilidad interanual, que tienen su origen en los cambios de la temperatura superficial del Océano Pacífico tropical. Así, un calentamiento en las aguas del Pacífico sumado a las condiciones atmosféricas propicias, frente a las costas de Ecuador, sur de Colombia y norte del Perú, originará un fenómeno de El Niño, mientras que el enfriamiento generará a La Niña.

Aunque el origen de los fenómenos El Niño y La Niña data de miles de años atrás, cada vez hay más evidencias de que el cambio climático de origen humano (por aumento en las concentraciones GEI), puede estar influenciando en aumentar la frecuencia, intensidad y magnitud de estos fenómenos (IDEAM, 2014).

El análisis de la información histórica, indica que las alteraciones que se producen en el régimen de lluvias en Colombia son explicadas en buena parte, por la variabilidad climática interanual, relacionada con los fenómenos El Niño y La Niña, los cuales han sido causa de sequías extremas y lluvias extraordinarias en diferentes regiones del país, ocasionando un efecto negativo sobre el medio físico natural y un impacto social y económico de grandes proporciones (Montealegre, 2012).

El fenómeno de El Niño se expresa por un aumento de la temperatura media de hasta 0.5°C y disminución de lluvias que llega a ser en algunos sectores hasta del 60%. Este fenómeno se puede manifestar también en sequías o heladas que, aunadas al mal uso del suelo y a otros factores como la expansión de especies invasoras pirófilas (ej. retamo espinoso) y pirogénicas, aumentan la probabilidad de ocurrencia de incendios forestales, erosión y deslizamientos de tierra, lo que ocasiona impactos en la productividad de las áreas agropecuarias, desabastecimiento de agua potable y aumento del área de influencia de los vectores de enfermedades como el dengue y la malaria.

El fenómeno de La Niña se expresa por una disminución de la temperatura media de hasta 0.5°C y aumento de lluvias que llega a ser de más del 60% en algunos lugares (en el momento de madurez del fenómeno), lo que se manifiesta en lluvias fuertes que al sumarse con procesos de mal uso del suelo, originan inundaciones, encharcamientos y deslizamientos de tierra, ocasionando afectaciones a las áreas agropecuarias y la infraestructura vial de la región, problemas en el suministro de agua potable (especialmente en sectores veredales) y aumento en la incidencia de enfermedades respiratorias como la gripe, la bronquitis y la pulmonía (IDEAM, 2014).
Tabla 19. Efectos del Niño y La Niña en la zona central de Cundinamarca

<table>
<thead>
<tr>
<th>Fenómeno</th>
<th>Primera temporada lluviosa Abril-Mayo</th>
<th>Segunda temporada seca Julio - Agosto</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Niño</td>
<td>Comportamiento prácticamente normal</td>
<td>Déficits de agua generalizados en los sectores occidental y central del departamento</td>
</tr>
<tr>
<td>La Niña</td>
<td>Comportamiento muy cercano a lo normal en la mayor parte del departamento</td>
<td>Se registran excedentes de precipitación en los sectores occidental y central del departamento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fenómeno</th>
<th>Segunda temporada lluviosa Octubre – Noviembre</th>
<th>Primera temporada seca del 2do año Enero - Febrero</th>
</tr>
</thead>
<tbody>
<tr>
<td>El Niño</td>
<td>Se observan algunos núcleos deficitarios dispuestos en forma dispersa que afectan algunos sectores de la región central</td>
<td>La condición deficitaria se extiende a casi toda Cundinamarca</td>
</tr>
<tr>
<td>La Niña</td>
<td>Disminución considerable en la magnitud y cubrimiento de las lluvias</td>
<td>Las lluvias se intensifican y generalizan</td>
</tr>
</tbody>
</table>

Fuente: Adaptado de IDEAM (2014)

De acuerdo con Montealegre (2012), los porcentajes de área afectada a nivel municipal por las alteraciones más probables en la precipitación y temperatura por la ocurrencia de un fenómeno de El Niño o La Niña Típicos serían los presentados en la Tabla 20.

Tabla 20. Alteraciones más probables de la temperatura y precipitación en Chía por fenómenos típicos de El Niño y La Niña

<table>
<thead>
<tr>
<th>Fenómeno</th>
<th>% del área total del municipio - Alteración más probable de la precipitación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Déficit severo</td>
</tr>
<tr>
<td>El Niño</td>
<td>0%</td>
</tr>
<tr>
<td>La Niña</td>
<td>0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fenómeno</th>
<th>% del área total del municipio - Alteración más probable de la temperatura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enfriamiento severo</td>
</tr>
<tr>
<td>El Niño</td>
<td>0%</td>
</tr>
<tr>
<td>La Niña</td>
<td>1%</td>
</tr>
</tbody>
</table>

Fuente: Montealegre (2012)

Con base en lo establecido en la guía de Minambiente (2018), en la Tabla 21 se presentan los posibles impactos que podría ocasionar la variabilidad climática en el municipio.

Tabla 21. Efectos de la variabilidad climática

<table>
<thead>
<tr>
<th>Amenaza climática</th>
<th>Efectos en el territorio</th>
<th>Manifestación a escala territorial</th>
<th>Relevancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olas de calor extremo</td>
<td>Pérdida de coberturas vegetales por incendios</td>
<td>Afectación de coberturas vegetales</td>
<td>Alta en el escenario 2071-2100</td>
</tr>
<tr>
<td>Heladas y granizadas</td>
<td>Daños a cultivos por eventos extremos</td>
<td>Afectaciones a sistemas agrícolas</td>
<td>Alta en todos los escenarios según los eventos presentados históricamente en la sabana de Bogotá</td>
</tr>
<tr>
<td>Cambios en la temperatura y precipitación media</td>
<td>Plagas y epidemias en sistemas agrícolas, pecuarios y silvícolas</td>
<td>Aumento de plagas y epidemias en sistemas productivos</td>
<td>Media en todos los escenarios según las características de los cultivos presentes en el municipio</td>
</tr>
<tr>
<td></td>
<td>Pérdida de productividad</td>
<td>Afectación y pérdida de sistemas productivos agrícolas</td>
<td>Media en todos los escenarios en relación con las Hectáreas cosechadas en el municipio, las cuales son bajas</td>
</tr>
<tr>
<td></td>
<td>Afectación a la salud humana</td>
<td>Aparición de nuevos vectores de enfermedades que afectan a la salud humana</td>
<td>Media en todos los escenarios teniendo en cuenta que el piso térmico continúa siendo frío</td>
</tr>
</tbody>
</table>
1.1.7.4 Análisis de vulnerabilidad

El análisis de vulnerabilidad hace referencia al reconocimiento de los elementos que pueden llegar a verse afectados, alterados o son susceptibles a sufrir daños tanto por los cambios a largos plazo en el clima (cambio climático) como por eventos extremos de la variabilidad climática.

El IDEAM publicó en la Tercera Comunicación Nacional de Cambio Climático (TCNCC), el documento de Análisis de vulnerabilidad y riesgo por cambio climático en Colombia, que orienta a los municipios sobre el estado de amenaza, vulnerabilidad y riesgo por cambio climático a los que están expuestos (CAR, 2018).

En la TCNCC se presentan resultados de Amenaza, Sensibilidad, Capacidad Adaptativa, Vulnerabilidad y Riesgo para todos los departamentos y municipios del país, de acuerdo con las definiciones presentadas en la Figura 53 (IDEAM, 2017):

Figura 53. Definiciones análisis de vulnerabilidad

Amenaza climática
Se refiere a la amenaza de una potencial ocurrencia de eventos de cambio climático que pueden tener un impacto físico, social, económico y ambiental en una zona determinada por un cierto periodo. Cada Amenaza se caracteriza por su localización, frecuencia e intensidad.

Vulnerabilidad
Es la propensión o predisposición para verse afectado negativamente. Los aspectos que conforman la vulnerabilidad son múltiples, pero en los sistemas humanos están relacionados con las condiciones sociales. La falta de infraestructura y recursos para enfrentar, y luego reducir las consecuencias del evento climático extremo son componentes centrales de la vulnerabilidad. Otra componente importante de la vulnerabilidad de un determinado grupo humano es la calidad y fortaleza de las instituciones que deben prevenir y luego atender las consecuencias de los eventos extremos.

Vulnerabilidad = Sensibilidad * Capacidad adaptativa

Sensibilidad
El grado en el cual las personas y los sectores de los cuales ellas dependen son afectadas por perturbaciones relacionadas con el clima. Los factores que incrementan la sensibilidad incluyen el grado de dependencia en sectores que son sensibles por el clima y la proporción de poblaciones sensibles a riesgos del clima debido a factores como topografía y demografía.

Capacidad adaptativa
La habilidad de la sociedad y los sectores que la sustentan para ajustarse para reducir el daño potencial y para responder a las consecuencias negativas de eventos climáticos.

Fuente: Adaptado de Minambiente (2018)

<table>
<thead>
<tr>
<th>Amenaza climática</th>
<th>Efectos en el territorio</th>
<th>Manifestación a escala territorial</th>
<th>Relevancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afectación y pérdida del patrimonio cultural, material e inmaterial</td>
<td>Deterioro de los valores objeto de conservación de interés cultural</td>
<td>Media en el escenario 2071-2100 por incremento de los niveles del río Bogotá que afecten el Puente del Común</td>
<td></td>
</tr>
<tr>
<td>Afecación por movimientos en masa</td>
<td>Afecación a infraestructuras básicas y sectores.</td>
<td>Alta en el escenario 2011-2041 y 2041 - 2070</td>
<td></td>
</tr>
<tr>
<td>Afecación por inundaciones</td>
<td>Cambios en los patrones de ocupación del territorio</td>
<td>Alta en todos los escenarios</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaborado a partir de información de IDEAM (2017)
El análisis de Vulnerabilidad y Riesgo por cambio climático de la TCNCC tomó como base las principales dimensiones utilizadas en el estudio internacional ND-GAIN. De acuerdo con IDEAM (2017), se definieron las dimensiones descritas en la Figura 54:

Figura 54. Definiciones dimensiones TCNCC

- **Seguridad Alimentaria** La seguridad alimentaria y nutricional es definida por el gobierno nacional en el documento Conpes 113 como la disponibilidad suficiente y estable de alimentos, el acceso y el consumo oportuno y permanente de los mismos en cantidad, calidad e inocuidad por parte de todas las personas, bajo condiciones que permitan su adecuada utilización biológica, para llevar una vida saludable y activa. En este caso se priorizó el componente de “Disponibilidad”, según denominación del Observatorio de Seguridad Alimentaria y Nutricional de Colombia, para Yuca, Arroz, Plátano, Caña Panelera, Papa, Maíz, Frijol, Café, así como los riesgos asociados.

- **Biodiversidad y Servicios Ecosistémicos** Esta dimensión relaciona el servicio ecosistémico de provisión, con especies categorizadas como de “uso” en análisis con especies Amenazadas listadas en los Libros Rojos nacionales con categoría de Amenaza (En Peligro Crítico, en Peligro y Vulnerables). Bajo esta dimensión se modeló el cambio de coberturas vegetales naturales al año 2040 bajo escenario RCP 6.0.

- **Salud** Este componente identifica la relación climática con la salud humana, bien por las diferencias de temperatura y precipitación en lapsos climáticos, así como la relación con vectores de enfermedades asociadas.

- **Hábitat Humano** Esta dimensión busca identificar aquellas variables asociadas a las viviendas y servicios asociados a los asentamientos humanos. Aquí se recogen elementos de gestión territorial e interacción institucional.

- **Infraestructura** Bajo esta dimensión, se presentan indicadores relacionados con vías, accesos aéreos, disponibilidad de conexión eléctrica, y alternativas energéticas para la capacidad adaptativa.

Fuente: Elaborado a partir de información IDEAM, (2017)
A continuación, se detallan los resultados obtenidos para Chía en la TCNCC, para las dimensiones listadas anteriormente.

1.1.7.5 Amenaza por cambio climático - Indicadores en Chía

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Indicador</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seguridad Alimentaria</td>
<td>A.SA.01_15</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>A.SA.02_15</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>A.SA.03_15</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>A.SA.04_15</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>A.SA.05_15</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>A.SA.06_15</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>A.SA.07_15</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>A.SA.08_15</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>A.SA.09_15</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>A.SA.10_15</td>
<td>0.51</td>
</tr>
<tr>
<td>Recurso Hídrico</td>
<td>A.RH.01_15</td>
<td>0.29</td>
</tr>
<tr>
<td>Biodiversidad</td>
<td>A.BD.01_15</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>A.BD.02_15</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>A.BD.03_15</td>
<td>0.99</td>
</tr>
<tr>
<td>Salud</td>
<td>A.S.01_15</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>A.S.02_15</td>
<td>0.50</td>
</tr>
<tr>
<td>Hábitat Humano</td>
<td>A.HH.01_15</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td>A.HH.02_15</td>
<td>0.55</td>
</tr>
<tr>
<td>Infraestructura</td>
<td>A.I.01_15</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>A.I.02_15</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>A.I.03_15</td>
<td>0.98</td>
</tr>
</tbody>
</table>
1.1.7.6 Sensibilidad al cambio climático - Indicadores en Chía

<table>
<thead>
<tr>
<th>Seguridad Alimentaria</th>
<th>S.SA.01_15</th>
<th>S.SA.02_15</th>
<th>S.SA.03_15</th>
<th>S.SA.04_15</th>
<th>S.SA.05_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje del PIB de otros cultivos a precios constantes</td>
<td>0.25</td>
<td>0.17</td>
<td>0.95</td>
<td>0.71</td>
<td>0.20</td>
</tr>
<tr>
<td>Porcentaje del PIB cultivo del café a precios constantes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Área asegurada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIB Producción pecuaria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severidad pobreza monetaria extrema</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recurso hídrico</th>
<th>S.RH.01_15</th>
<th>S.RH.02_15</th>
<th>S.RH.03_15</th>
<th>S.RH.04_15</th>
<th>S.RH.05_15</th>
<th>S.RH.06_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice de presión hídrica al ecosistema</td>
<td>0.70</td>
<td>0.39</td>
<td>0.67</td>
<td>0.32</td>
<td>0.49</td>
<td>0.30</td>
</tr>
<tr>
<td>Índice de agua no retornada a la cuenca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Índice de retención y regulación hídrica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Índice de uso del agua superficial (Medio)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brecha de acueducto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Índice de Aridez</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biodiversidad</th>
<th>S.BD.01_15</th>
<th>S.BD.02_15</th>
<th>S.BD.03_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Bosque</td>
<td>0.93</td>
<td>0.93</td>
<td>0.20</td>
</tr>
<tr>
<td>% ecosistema natural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIB Silvicultura constantes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salud</th>
<th>S.S.01_15</th>
<th>S.S.02_15</th>
<th>S.S.03_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letalidad por Dengue</td>
<td>0.17</td>
<td>0.53</td>
<td>0.23</td>
</tr>
<tr>
<td>Sumatoria población</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brecha de vacunación</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hábitat Humano</th>
<th>S.HH.01_15</th>
<th>S.HH.02_15</th>
<th>S.HH.03_15</th>
<th>S.HH.04_15</th>
<th>S.HH.05_15</th>
<th>S.HH.06_15</th>
<th>S.HH.07_15</th>
<th>S.HH.08_15</th>
<th>S.HH.09_15</th>
<th>S.HH.10_15</th>
<th>S.HH.11_15</th>
<th>S.HH.12_15</th>
<th>S.HH.13_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad material viviendas</td>
<td>0.99</td>
<td>0.26</td>
<td>1.00</td>
<td>1.00</td>
<td>0.89</td>
<td>0.79</td>
<td>0.11</td>
<td>0.12</td>
<td>0.15</td>
<td>0.55</td>
<td>0.49</td>
<td>0.15</td>
<td>0.42</td>
</tr>
<tr>
<td>Area humedales con conflicto</td>
<td></td>
</tr>
<tr>
<td>Demanda agua – Uso doméstico</td>
<td></td>
</tr>
<tr>
<td>Demanda agua – Comercio y servicios</td>
<td></td>
</tr>
<tr>
<td>Demanda agua – Industria y Construcción</td>
<td></td>
</tr>
<tr>
<td>% de Urbanización</td>
<td></td>
</tr>
<tr>
<td>Afectados fenómenos hidrometeorológicos</td>
<td></td>
</tr>
<tr>
<td># deslizamientos</td>
<td></td>
</tr>
<tr>
<td># inundaciones</td>
<td></td>
</tr>
<tr>
<td>Área anomalías precipitación</td>
<td></td>
</tr>
<tr>
<td>Población femenina</td>
<td></td>
</tr>
<tr>
<td>Déficit vivienda</td>
<td></td>
</tr>
<tr>
<td>Meses anomalías precipitación</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infraestructura</th>
<th>S.I.01_15</th>
<th>S.I.02_15</th>
<th>S.I.03_15</th>
<th>S.I.04_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vuelos aeropuerto principal</td>
<td>0.99</td>
<td>0.93</td>
<td>0.14</td>
<td>0.11</td>
</tr>
<tr>
<td>Intensidad tráfico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumo eléctrico</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aporte PIB Transporte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sensibilidad Break Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy baja</td>
</tr>
<tr>
<td>Baja</td>
</tr>
<tr>
<td>Media</td>
</tr>
<tr>
<td>Alta</td>
</tr>
<tr>
<td>Muy alta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hábitat Humano</th>
<th>Calidad material viviendas</th>
<th>0.99</th>
<th>0.26</th>
<th>1.00</th>
<th>1.00</th>
<th>0.89</th>
<th>0.79</th>
<th>0.11</th>
<th>0.12</th>
<th>0.15</th>
<th>0.55</th>
<th>0.49</th>
<th>0.15</th>
<th>0.42</th>
<th>Muy baja</th>
<th>0.229695</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demanda agua – Uso doméstico</td>
<td></td>
</tr>
<tr>
<td>Demanda agua – Comercio y servicios</td>
<td></td>
</tr>
<tr>
<td>Demanda agua – Industria y Construcción</td>
<td></td>
</tr>
<tr>
<td>% de Urbanización</td>
<td></td>
</tr>
<tr>
<td>Afectados fenómenos hidrometeorológicos</td>
<td></td>
</tr>
<tr>
<td># deslizamientos</td>
<td></td>
</tr>
<tr>
<td># inundaciones</td>
<td></td>
</tr>
<tr>
<td>Área anomalías precipitación</td>
<td></td>
</tr>
<tr>
<td>Población femenina</td>
<td></td>
</tr>
<tr>
<td>Déficit vivienda</td>
<td></td>
</tr>
<tr>
<td>Meses anomalías precipitación</td>
<td></td>
</tr>
</tbody>
</table>
1.1.7.7 Capacidad Adaptativa al cambio climático - Indicadores en Chía

<table>
<thead>
<tr>
<th>Seguridad Alimentaria</th>
<th>CA.SA.01_15</th>
<th>CA.SA.02_15</th>
<th>CA.SA.03_15</th>
<th>CA.SA.04_15</th>
<th>CA.SA.05_15</th>
<th>CA.SA.06_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asistencia técnica por UPA</td>
<td>0.21</td>
<td>0.42</td>
<td>0.67</td>
<td>0.31</td>
<td>0.1</td>
<td>0.58</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recurso hídrico</th>
<th>CA.RH.01_15</th>
<th>CA.RH.02_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Índice eficiencia uso del agua</td>
<td>0.27</td>
<td>0.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biodiversidad</th>
<th>CA.BD.01_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Áreas RUNAP</td>
<td>0.10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Salud</th>
<th>CA.S.01_15</th>
<th>CA.S.02_15</th>
<th>CA.S.03_15</th>
<th>CA.S.04_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camas hospitalarias</td>
<td>0.38</td>
<td>0.15</td>
<td>0.48</td>
<td>0.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inversión sector ambiental</td>
<td>0.97</td>
<td>0.97</td>
<td>0.92</td>
<td>0.98</td>
<td>0.76</td>
<td>0.38</td>
<td>0.44</td>
<td>0.10</td>
<td>0.94</td>
<td>0.84</td>
<td>0.90</td>
<td>0.93</td>
<td>0.62</td>
<td>0.69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Infraestructura</th>
<th>CA.I.01_15</th>
<th>CA.I.02_15</th>
<th>CA.I.03_15</th>
<th>CA.I.04_15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Km red vial</td>
<td>0.32</td>
<td>0.63</td>
<td>0.28</td>
<td>0.91</td>
</tr>
</tbody>
</table>

C. Adaptativa

Break Value

- Muy baja: 0.43
- Baja: 0.64
- Media: 0.78
- Alta: 0.86
- Muy alta: 1.00
1.1.7.8 Riesgo por cambio climático Chía

Según el nivel de riesgo registrado se evidencia que Chía ocupa el puesto 15 en el departamento de Cundinamarca con un valor de 0.24. En la Figura 55 se presentan los resultados por dimensiones.

Figura 55. Riesgo por cambio climático Chía

CHÍA

Riesgo por cambio climático
0.24

Posición en el departamento
15/117

Fuente: Elaborado a partir de la información de la TCNCC, (2017)
1.1.7.8.1 Resultados globales

Figura 56. Resultados globales Análisis vulnerabilidad y riesgo por cambio climático en Chía

1.1.7.9 Estimación de emisiones de gases de efecto invernadero (GEI)

Un inventario de emisiones y absorciones de Gases de Efecto Invernadero (GEI) es un reporte, delimitado para un periodo de tiempo y territorio, de la cantidad de GEI emitidos directamente a la atmósfera como resultado de actividades humanas y de las absorciones por sumideros de carbono, tales como bosques, cultivos o pastizales.

Dado el número, la diversidad y la extensión de las fuentes de emisión y sumideros de GEI, es financiera y logísticamente imposible monitorear todas las fuentes de emisión o sumideros de GEI a escala nacional o departamental en el tiempo y lugar en los que ocurren. Por consiguiente, los inventarios son estimaciones de las emisiones y absorciones, y no una contabilidad de valores perfectamente conocidos.

Las estimaciones se realizan para 6 GEI: CO₂, CH₄, N₂O, HFC, SF₆ y PFC. Estos gases se reportan en unidades de masa de cada GEI, llevados una unidad común de medida denominada CO₂ equivalente.

Los resultados se expresan como emisiones brutas, absorciones brutas (valores en negativo) y emisiones totales netas (emisiones brutas menos absorciones). Un balance neto en positivo corresponde a emisiones y en negativo a absorciones (IDEAM, 2016).

La CAR (2018) establece que “los municipios que NO cuentan con registros de emisiones (inventario de GEI o huella de carbono municipal), podrían iniciar conformando una base datos con la información de los sectores o actividades emisores de GEI, como, por ejemplo: número de cabezas de ganado, áreas en cultivos, cambio de uso del suelo, entre otras, en aras de estimar la huella de carbono durante la vigencia del POT. No obstante, esta tarea se debe proyectar en la etapa de formulación del DTS”.

Teniendo en cuenta que actualmente Chía no cuenta con inventario de GEI, este debe realizarse durante la vigencia del POT, con el fin de reconocer las dinámicas económicas y culturales relevantes en el modelo territorial actual y futuro que sean fuentes activas de emisiones de GEI, caracterización que servirá de partida para identificar los sectores sobre los cuales es pertinente implementar acciones mitigación.

El municipio cuenta con la Herramienta para el cálculo de la Huella de Carbono a Nivel Municipal. Esta herramienta permite calcular las emisiones de Gases de Efecto Invernadero (GEI) generadas por los siguientes sectores: Residencial, Institucional, Transporte, Industrial, Agropecuario, Residuos, y Uso del Suelo. Cambio del Uso del Suelo y Silvicultura. En su conjunto corresponde a la “Huella de Carbono Territorial”.
Para el cálculo de la Huella de Carbono se utiliza la metodología definida por el IPCC versión 2007, que corresponde a la implementada para la elaboración de los inventarios nacionales y regionales de Emisiones de Gases de Efecto Invernadero.

Los factores de emisión utilizados en la herramienta se obtuvieron de las siguientes fuentes:
- Combustibles y Energía Eléctrica: Unidad de Planeación Minero Energética – UPME.

De acuerdo con esto, para calcular la Huella de Carbono Territorial se obtendrá durante la vigencia del POT la información listada en la Tabla 22, según lo establecido en la Herramienta:

Tabla 22. Información requerida para el cálculo de la Huella de Carbono Territorial

<table>
<thead>
<tr>
<th>SECTOR</th>
<th>ALCANCE</th>
<th>TIPO DE FUENTE</th>
<th>FUENTE DE EMISIÓN DE GEI</th>
<th>DATOS REQUERIDOS DE LA ACTIVIDAD</th>
<th>UNIDAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESIDENCIAL</td>
<td>1</td>
<td>FIJA</td>
<td>Combustibles sólidos</td>
<td>Consumo de carbón en los hogares</td>
<td>Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consumo de leña o madera en los hogares</td>
<td>Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles líquidos</td>
<td>en los hogares</td>
<td>Gal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles gaseosos</td>
<td>Consumo de Gas natural, GLP o Gas propano en los hogares</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refrigerantes</td>
<td>Cantidad de neveras, refrigeradores, enfríadores o aires acondicionados en los hogares</td>
<td>Num.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Energía Eléctrica</td>
<td></td>
<td>Consumo de energía eléctrica adquirida en los hogares</td>
<td>kWh</td>
</tr>
<tr>
<td>COMERCIAL E</td>
<td>1</td>
<td>FIJA</td>
<td>Combustibles sólidos</td>
<td>Consumo de carbón en los comercios e instituciones</td>
<td>Ton</td>
</tr>
<tr>
<td>INSTITUCIONAL</td>
<td></td>
<td></td>
<td></td>
<td>Consumo de leña o madera en los comercios e instituciones</td>
<td>Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles líquidos</td>
<td>Consumo de Kerosene, Diésel o Gasolina en los comercios e instituciones</td>
<td>Gal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles gaseosos</td>
<td>Consumo de Gas natural, GLP o Gas propano en los comercios e instituciones</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refrigerantes</td>
<td>Cantidad de neveras, refrigeradores, enfríadores o aires acondicionados en los comercios e instituciones</td>
<td>Num.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Energía Eléctrica</td>
<td></td>
<td>Consumo de energía eléctrica adquirida en los comercios e instituciones</td>
<td>kWh</td>
</tr>
<tr>
<td>TRANSPORTE</td>
<td>1</td>
<td>MOVIL</td>
<td>Combustibles líquidos</td>
<td>Consumo de Diésel, Gasolina, Jet A1 o Avigas en el sector transporte</td>
<td>Gal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles gaseosos</td>
<td>Consumo de Gas natural o GLP en el sector transporte</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refrigerantes y Lubricantes</td>
<td>Cantidad de vehículos</td>
<td>Num.</td>
</tr>
<tr>
<td>INDUSTRIAL</td>
<td>1</td>
<td>FIJA</td>
<td>Combustibles sólidos</td>
<td>Consumo de carbón en las industrias</td>
<td>Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consumo de leña o madera en las industrias</td>
<td>Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles líquidos</td>
<td>Consumo de Kerosene, Diésel, Gasolina, combustoleo, crudo de castilla o avigas en las industrias</td>
<td>Gal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles gaseosos</td>
<td>Consumo de Gas natural, GLP, Gas propano, Biogas, Coke de Gas, Acetileno en las industrias</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refrigerantes</td>
<td>Cantidad de neveras, refrigeradores, enfríadores o aires acondicionados en las industrias</td>
<td>Num.</td>
</tr>
<tr>
<td>SECTOR</td>
<td>ALCANCE</td>
<td>TIPO DE FUENTE</td>
<td>FUENTE DE EMISIÓN DE GEI</td>
<td>DATOS REQUERIDOS DE LA ACTIVIDAD</td>
<td>UNIDAD</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Extintores</td>
<td>Cantidad de CO2 o HCFC 123 recargado</td>
<td>Kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lubricantes</td>
<td>Cantidad de industrias adquirida en las industrias</td>
<td>Num.</td>
</tr>
<tr>
<td>2</td>
<td>AGROPECUARIO</td>
<td>Energía Eléctrica</td>
<td></td>
<td>Consumo de energía eléctrica adquirida en las industrias</td>
<td>kWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles sólidos</td>
<td>Consumo de Kerosene, Diésel o Gasolina, combustoleo, crudo de castilla o avigas en las actividades agropecuarias</td>
<td>Ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles líquidos</td>
<td>Consumo de Gas natural, GLP, Gas propano o Biogas en las actividades agropecuarias</td>
<td>Gal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Combustibles gaseosos</td>
<td>Cantidad de neveras, refrigeradores, enfriadores o aires acondicionados en las actividades agropecuarias</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Refrigerantes</td>
<td></td>
<td>Num.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fermentación entérica y manejo de estiércol</td>
<td>Cantidad de animales por especie</td>
<td>Num.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Manejo de residuos agropecuarios</td>
<td>Cantidad de residuos agropecuarios gestionada a través de compostaje, invernación o digestión anaeróbica</td>
<td>Kg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Uso de fertilizantes, cal y urea</td>
<td>Cantidad usada de fertilizantes, cal y urea</td>
<td>Kg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Residuos sólidos orgánicos domésticos dispuestos en relleno sanitario</td>
<td>Cantidad de residuos sólidos orgánicos dispuestos en relleno sanitario</td>
<td>Kg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Residuos sólidos orgánicos industriales dispuestos en relleno sanitario</td>
<td>Cantidad de residuos sólidos orgánicos dispuestos en relleno sanitario</td>
<td>Kg.</td>
</tr>
<tr>
<td></td>
<td>RESIDUOS</td>
<td></td>
<td>Residuos líquidos domésticos tratados anaeróbicamente</td>
<td>Volumen tratado de aguas residuales domésticas mediante sistema anaeróbico</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concentración de DBO₅ de las aguas residuales domésticas que ingresan al sistema anaeróbico</td>
<td>mg/l</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Residuos líquidos industriales tratados anaeróbicamente</td>
<td>Volumen tratado de aguas residuales industriales mediante sistema anaeróbico</td>
<td>m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concentración de DQO de las aguas residuales domésticas que ingresan al sistema anaeróbico</td>
<td>mg/l</td>
</tr>
<tr>
<td></td>
<td>USOS DEL SUELO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUMIDEROS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: CAR, CAEM

1.1.7.10 Identificación, selección y priorización de medidas

En la Política Nacional de Cambio Climático se listan las principales diferencias entre adaptación al cambio climático y mitigación de gases de efecto invernadero, las cuales se listan en la Tabla 23.
Tabla 23. Principales diferencias entre adaptación y mitigación

<table>
<thead>
<tr>
<th>Objetivos</th>
<th>Mitigación</th>
<th>Adaptación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aborda las causas del cambio climático (acumulación de GEI en la atmósfera).</td>
<td>Aborda impactos del cambio climático.</td>
</tr>
<tr>
<td>Escala espacial</td>
<td>Es principalmente un tema internacional, ya que la mitigación proporciona beneficios globales, aunque también locales en una perspectiva de que una economía baja en carbono se hace más competitiva.</td>
<td>Es principalmente un tema local, ya que la adaptación proporciona beneficios mayormente a escala local; sin embargo, estos también se amplían a escalas regional y global en muchos de los casos.</td>
</tr>
<tr>
<td>Escala de tiempo</td>
<td>La mitigación tiene un efecto a largo plazo sobre el cambio climático, debido a la inercia del sistema climático.</td>
<td>La adaptación puede tener un efecto a corto plazo sobre la reducción de la vulnerabilidad.</td>
</tr>
<tr>
<td>Sectores</td>
<td>La mitigación es una prioridad en los sectores de energía, transporte, industria y gestión de residuos.</td>
<td>Los sectores forestal y agrícola abordan tanto las causas del cambio climático debido a las emisiones que generan, como los impactos del cambio climático.</td>
</tr>
</tbody>
</table>

Fuente: Ministerio de Ambiente (2017)

De acuerdo con los resultados globales del análisis de vulnerabilidad y riesgo por cambio climático, presentados en la Figura 56, Chía presenta un nivel de sensibilidad medio y una capacidad adaptativa alta, obteniéndose una vulnerabilidad media. La amenaza identificada es alta, obteniéndose finalmente riesgo por cambio climático alto.

Las medidas de mitigación y adaptación al cambio climático deben considerar los valores obtenidos en los indicadores de amenaza, sensibilidad y capacidad adaptativa, así como los valores de riesgo obtenidos por dimensión, presentados en la Figura 55. De acuerdo con esto, se incluyen en el programa de ejecución de manera transversal.

1.1.7.11 Contenido programático

Para la articulación de proyectos POMCA cuenca río Bogotá se consultó la Matriz de ejecución de proyectos Río Bogotá buscando los programas que son designados para el ámbito territorial del municipio de Chía encontrándose un total de 19 proyectos divididos en 5 componentes programáticos, los cuales se evidencian en la Figura 57:

Figura 57. Contenido programático del POMCA para Chía

- **Programa de gobernanza y gestión pública del agua en la cuenca del río Bogotá (GB)** (9)
 - GB113- Humedales: un llamado para su conservación
 - GB114 - Manejo integrado de microcuencas abastecedoras de agua
 - GB115 - Promoviendo el Ecodesarrollo de la Cuenca
 - GB116 - Guardabosques para la prevención de incendios, educación sobre la naturaleza y apoyo a las comunidades locales
 - GB117- Viveros. Una experiencia comunitaria para la sostenibilidad y fomento de la conectividad ecológica en la Cuenca
 - GB122-Promoviendo alertas tempranas socio ambientales
 - GB131- Gestión del conocimiento para la gestión integral del recurso hídrico de la cuenca
 - GB132 - Construyendo capital técnico-científico en pro de la resiliencia socioambiental de la cuenca
 - GB142 - Construyendo Cultura de Cuidado y Protección del río Bogotá

- **Programa de ecosistemas estratégicos y sostenibilidad del territorio en la cuenca (EE)** (2)
 - EE211 - Restauración en áreas con mayor impacto en la recuperación de la biodiversidad y de la oferta de servicios Ecosistémicos en la cuenca del río Bogotá
 - EE8222- Protección de la estructura ecológica principal (EEP) que sustentan la oferta de biodiversidad y los servicios ecosistémicos, para la cuenca del río Bogotá

- **Programa de seguridad hídrica en la cuenca del río Bogotá (PH)** (1)
 - PHB312. Mejora en la calidad hídrica de las subcuenca priorizadas de la cuenca del río Bogotá
1.1.8 Gestión del riesgo

1.1.8.1 Amenazas naturales en la zonificación POMCA río Bogotá

La zonificación del POMCA del río Bogotá, según la Guía técnica para la Formulación de los Planes de Ordenación y Manejo de Cuencas Hidrográficas (Minambiente, 2014), se realizó en 5 pasos:

De acuerdo con la Figura 58, en el Paso 4 de la zonificación realizada en el POMCA, con la calificación del grado de amenaza natural se realiza una calificación de las categorías obtenidas en el Paso 3, espacializando los grados de amenaza alta y media para los eventos de movimientos en masa, inundaciones y avenida torrencial. Para la calificación final realizada en el Paso 4 de la zonificación, las áreas de amenaza media fueron clasificadas dentro de la categoría de Uso Múltiple, como áreas para la recuperación y el uso múltiple ARUM, y las áreas de amenaza alta fueron delimitadas como Áreas de protección de amenazas naturales dentro de la zonificación.

En la Figura 59 se presentan las zonas clasificadas como amenaza alta en el POMCA del río Bogotá para el municipio de Chía, según lo establecido en la página 273 del documento de Fase Prospectiva & Zonificación Ambiental del POMCA del río Bogotá:

"Es importante resaltar que los factores de decisión tiene dos premisas fundamentales; la primera corresponde a las áreas por amenaza media, la cual valida las categorías de uso validadas en los pasos anteriores de manera condicionada, es decir que serán clasificadas como zonas de recuperación para el uso múltiple; la segunda premisa contempla que aquellas áreas que sean validadas como áreas de protección por amenazas naturales, lo serán hasta tanto se realicen estudios más detallados por parte de los municipios para la toma de decisiones en la reglamentación de usos del suelo."
Paso 1. Incorporar sobre la cartografía de la cuenca la delimitación de las áreas y ecosistemas estratégicos definidos en el diagnóstico, que hacen parte de la estructura ecológica principal.

Paso 2. Definir categorías de zonificación intermedias, según el uso determinado por capacidad agrológica de las tierras y el índice de uso del agua superficial a nivel de subcuenca.

Paso 3. Calificar la capa cartográfica denominada usos de la tierra validada por recurso hídrico (resultado del paso 2, con el índice del estado actual de las coberturas obtenido a través del análisis del componente biótico.

Paso 4. Calificar la capa cartográfica denominada: usos de la tierra validada por recurso hídrico y estado actual de las coberturas naturales (resultado del paso 3), con la calificación del grado de amenaza natural para validar o definir una nueva categoría de uso de la tierra.

Paso 5. Calificar la capa cartográfica denominada uso de la tierra validada por recurso hídrico, estado actual de las coberturas naturales y grado de amenaza natural (resultado del paso 4), así como la capa cartográfica de las áreas y ecosistemas estratégicos definidos en el paso 1 con la calificación de los conflictos por uso y manejo de los recursos naturales, para validar o reclasificar nuevas zonas de uso y manejo.

Fuente: Ministerio de Ambiente (2014)

Figura 59. Zonas de amenaza alta POMCA río Bogotá

Fuente: Consorcio Huitaca (2017)
1.1.8.2 Proceso de conocimiento del riesgo de desastres

De acuerdo con lo establecido en la “Guía de Integración de la Gestión del Riesgo y el Ordenamiento Territorial Municipal” (UNGRD, 2015), durante la etapa de diagnóstico del POT, debe realizarse el proceso de conocimiento del riesgo, que debe contemplar lo siguiente:

- Identificación y caracterización de escenarios de riesgo
 - Identificación y caracterización de las condiciones de amenaza
 - Identificación y caracterización de los elementos expuestos
 - Identificación y caracterización de la vulnerabilidad de los elementos expuestos
- Análisis y evaluación del riesgo
- Monitoreo y seguimiento del riesgo
- Comunicación del riesgo

Como base para este proceso debe considerarse que en el marco del proceso de revisión del POT (Acuerdo 100 de 2016) el municipio elaboró estudios básicos de amenaza, condición de amenaza y condición de riesgo (Documento de Gestión del Riesgo, Anexo 2 del Acuerdo 100 de 2016), cumpliendo con las exigencias establecidas por el Decreto 1807 de 2014 (compilado en el Decreto 1077 de 2015), sobre lo cual el grupo de gestión del Riesgo de la CAR emitió el Concepto No. 463 del 12 de noviembre de 2015 en el que precisa en las recomendaciones y conclusiones:

“El desarrollo de los estudios básicos que llevan a la delimitación de las zonas de amenaza, zonas con condición de amenazas y zonas con condición de riesgos para movimientos de masa, inundaciones, avenidas torrentiales e incendios forestales se consideran que son coherentes con lo definido en el Decreto 1807 de 2014, ya que establece la metodología, los procedimientos, los resultados analíticos y presenta la cartografía en las escalas y con las leyendas establecidas por la norma”.

A partir de este concepto, en el acta de concertación de la revisión general y ajuste del plan de ordenamiento territorial del municipio de Chía suscrita entre la Corporación Autónoma Regional de Cundinamarca CAR y el municipio de Chía, el 14 y 28 de diciembre de 2015, en el numeral 2.9 se establece que:

“La Corporación considera que en cumplimiento de lo dispuesto en los artículos 22 y 23 del Decreto 1807/2014 (compilado Dec. 1077/2015), el municipio debe incluir y desarrollar en los documentos del POT los siguientes aspectos: En el Documento Técnico Soporte, los estudios básicos y cuando se disponga de estudios detallados, conteniendo la justificación, la descripción, el desarrollo y la aplicación de las determinaciones de planificación de los componentes y contenidos del Plan de Ordenamiento Territorial.”

Y posteriormente en la concertación se establece que:

“El municipio se acoge a lo establecido por la corporación y el Decreto 1807 de 2014 y cuenta con informe favorable de la oficina de la gestión del riesgo del DGOAT en el cual se dio estricto cumplimiento y se identifican las zonas de amenaza y de estudios detallados con el modelo finalmente concertado.
De igual manera en cada uno de los componentes se incluyen las medidas de mitigación de cada una de las amenazas establecidas, a través de estrategias y proyectos identificados y se cuenta con la cartografía integrada en anexo 2 “Gestión del Riesgo”.”

De acuerdo con lo anterior, a continuación, se detalla la información contenida en el estudio en mención, como base para la etapa de conocimiento del riesgo.
1.1.8.2.1 Escenarios de riesgo Plan Municipal de Gestión del Riesgo de Desastres (PMGRD)

El municipio cuenta con un PMGRD, en versión 3 (CMGRD, 2018). En dicho documento se relacionan y priorizan los siguientes escenarios de riesgo:

- Escenario de riesgo por inundación: Se identifican amenazas por el río Frío en las veredas Fagua, Bojacá, Tíquiza, Fonquetá, Cerca de Piedra, La Balsa y zona urbana. Los predios dentro de la ronda de los 75 metros se categorizan como zona de riesgo o/y amenazas. Las amenazas por inundación por el río Bogotá se presentan en las veredas Yerbabuena, Fusca, Bojacá y la Balsa. Los predios dentro de la ronda de los 150 metros se categorizan como zona de riesgo o/y amenazas. Durante la temporada invernal de 2010 – 2011 se vieron afectadas 1033 Ha y 1845 predios.

- Escenario de riesgo por incendios forestales: Las zonas con mayor probabilidad de amenaza por incendio se encuentran en los cerros orientales y parte de los cerros occidentales con un área total aproximada de 719 Ha.

- Escenario de riesgo por Remoción de Masa: En las veredas de Yerbabuena y Fusca se presenta esta amenaza por la explotación de las canteras y pendientes superiores al 30%, estos puntos se localizan dentro del área de influencia de explotación de las canteras, en Fusca el área de monitoreo es la asociada a la cantera de Trabajos Urbanos. Otra zona que presenta un gran riesgo de remoción en masa es la que corresponde al Resguardo Indígena, donde se han identificado construcciones en riesgo alto y medio.

- Escenario de riesgo por Aglomeración de Público: La ubicación geográfica del municipio de Chía, ha generado desde siempre, un atractivo particular para la realización de eventos masivos y no masivos de toda índole, atendiendo a la proximidad con el Distrito Capital, y por ser el lugar de paso entre la provincia y el centro del país.

1.1.8.2.2 Delimitación y zonificación de las áreas de amenaza

De acuerdo con lo establecido en el Artículo 2.2.2.1.3.1.2 del Decreto 1077 de 2015, “Teniendo en cuenta el principio de gradualidad de que trata la Ley 1523 de 2012, se deben realizar los estudios básicos para la revisión de los contenidos de mediano y largo plazo de los planes de ordenamiento territorial o la expedición de nuevos planes y en su ejecución se deben realizar los estudios detallados”.

Teniendo en cuenta lo anterior, en el Artículo 2.2.2.1.3.1.3 del decreto en mención se relaciona el contenido de dichos estudios básicos para los fenómenos de inundación, avenidas torrenciales y movimientos en masa, a saber:

- La delimitación y zonificación de las áreas de amenaza.
- La delimitación y zonificación de las áreas con condición de amenaza en las que se requiere adelantar los estudios detallados a que se refiere el siguiente artículo.
- La delimitación y zonificación de las áreas con condición de riesgo en las que se requiere adelantar los estudios detallados a que se refiere el siguiente artículo.
- La determinación de las medidas de intervención, orientadas a establecer restricciones y condicionamientos mediante la determinación de normas urbanísticas.

Inundación

En el estudio de riesgos del Acuerdo 100 de 2016 se identificaron puntos críticos en riesgo de inundación, se evaluaron las características hidrológicas para el río Frío y el río Bogotá, incluyendo morfología, precipitación, caudales máximos para diferentes periodos de retorno, y por medio del
software HEC-RAS 4.0 se realizó el modelo hidráulico de los 2 ríos, obteniendo la mancha de inundación.

La clasificación de la amenaza se realizó teniendo en cuenta los periodos de retorno, así: Para periodos de retorno entre 50 y 100 años la amenaza se clasificó como media y baja, y periodos de retorno de 2.33 años se clasificó como amenaza alta. En la Figura 60 se presenta la zonificación de amenaza por inundación.

Figura 60. Amenaza por inundación zona rural

![Mapa de inundación zona rural](image1)

Fuente: Acuerdo 100 de 2016

Figura 61. Amenaza por inundación zona urbana

![Mapa de inundación zona urbana](image2)

Fuente: Acuerdo 100 de 2016
- **Movimientos en masa**

Figura 62. Amenaza por remoción en masa zona rural

Se parte de la determinación de la susceptibilidad, la cual se obtiene a partir del cruce de información relacionada con geología, pendiente, geomorfología, cobertura y uso del suelo.

Para la determinación de la amenaza final por remoción en masa, se consideraron los escenarios de detonante clima y detonante sismo. Para la determinación de la amenaza por detonante clima se incluyó la susceptibilidad más un factor de clima y para la determinación de amenaza por detonante sismo se incluyó la susceptibilidad más un factor calificado de detonante sismo. La amenaza total corresponde a la integración de las 2 amenazas descritas previamente. En la **Figura 62** se presenta la amenaza por remoción en masa en la zona rural.

Respecto a la zona urbana, teniendo en cuenta que no se presentan antecedentes de procesos de remoción en masa y las pendientes son inferiores al 5% la amenaza por remoción en masa se considera baja.

- **Avenidas torrenciales**

Se analizó la amenaza por avenida torrencial para la microcuenca de la quebrada Honda, para lo cual se tuvieron en cuenta los parámetros clasificación morfométrica, geomorfología, precipitación, materiales y cobertura superficiales. De acuerdo con la ponderación establecida para los parámetros se determinó que la amenaza por avenida torrencial es baja.

Fuente: Acuerdo 100 de 2016
Para evaluar la amenaza por incendio se asignaron valores según el tipo de cobertura del suelo en función de su susceptibilidad a los incendios. Los valores empleados para el análisis varían entre 1 y 8 de la siguiente manera: 1 para vegetación xerofítica, vegetación acuática flotante, afloramientos rocosos, cuerpos de agua, cultivos, 2 para vegetación de páramo, rastrojos. Un valor de 4 para bosque plantado, matorrales, pasto y rastrojo. Un valor de 8 para bosque primario, bosque altoandino y bosque secundario.

1.2 Medio Biotico

El medio biótico es aquel que comprende tanto la materia orgánica no viviente como las demás plantas y animales de la región, incluida la Población específica a que pertenece el ser u objeto (Campos, 2000).

El medio biótico debe entenderse como el complemento del Medio Físico (Medio Abiótico) y su interrelación debe comprenderse como las relaciones que dan origen a los ecosistemas y las situaciones y dinámicas regionales y locales que son particulares para el caso de estudio que nos ocupa.

1.2.1 Ecosistemas

En síntesis, el ecosistema es una porción del espacio geográfico definido que se identifica como la confluencia de una asociación de clima, geoformas, sustratos, comunidades, biotas y usos antrópicos específicos (Rodríguez, et al., 2004). José et al. 2003, (citado por Rodríguez et al., 2004) lo definen como una unidad geográfica, como un sistema funcional con entradas y salidas y con límites que pueden ser naturales o arbitrarios.
De acuerdo al Mapa de Ecosistemas Continentales, Costeros y Marinos de Colombia a escala 1:100.000 para Colombia (IDEAM, 2017), en Chía se identifican 3 grupos de grandes biomas generales:

- Orobioma Azonal del Zonobioma Húmedo Tropical.
- Orobioma del Zonobioma Húmedo Tropical.
- Pedobioma del Zonobioma Húmedo Tropical

Figura 64. Biomas municipio de Chía

Las 3 clases de Biomas existentes se pueden definir de manera general de la siguiente manera:

- Zonobiomas: Son biomas zonales delimitados por unos amplios y peculiares caracteres climáticos, edáficos y de vegetación zonal (clímax). Walter, creador del término, reconoce en la geobiosfera nueve zonobiomas con sus correspondientes zonas climáticas: ecuatorial, tropical, subtropical árido, mediterráneo, templado cálido, templado, templado árido, boreal y ártico; cuya característica determinante es el clima. Walter (1977) también marcó la necesidad de establecer subdivisiones dentro de los zonobiomas en función fundamentalmente de la cuantía y/o efectividad de las precipitaciones.

- Orobiomas: Son biomas definidos por la presencia de montañas que cambian el régimen hídrico y forman cinturones o fajas de vegetación de acuerdo con su incremento en altitud y la respectiva disminución de la temperatura (Walter, 1977). Según el rango altitudinal se pueden distinguir tres grandes zonas dentro de los orobiomas: zona de baja montaña (500 y 1.800 msnm), zona de media montaña (1.800 y 2.800 msnm) y zona de alta montaña (> 2.800 msnm) hasta el nivel de las nieves perpetuas (> 4.500 m).

- Pedobiomas: Son biomas originados por un característico tipo de suelo, generando condiciones azonales de la vegetación (Sarmiento, 2001); en este caso la vegetación, y los procesos ecológicos en general, están directamente influenciados por las condiciones
edáficas e hidrológicas que por las climáticas. Según el tipo de factor condicionante, se pueden distinguir diferentes clases de pedobiomas:

- Litobiomas: lugares con suelo incipiente sobre roca dura.
- Halobiomas: zonas con suelos anegados con influencia salina.
- Helobiomas: lugares con mal drenaje, encharcamiento permanente o con prolongado período de inundación.
- Peinobioma: formado bajo diversas condiciones climáticas y elevaciones en las que pueden presentarse afloramientos rocosos donde ocurren procesos de meteorización de las rocas y una lenta formación de suelos que los recubre. Su precipitación varía entre 1.700 y 3.000 mm/año.

De acuerdo con el Mapa de Ecosistemas Continentales, Costeros y Marinos de Colombia a escala 1:100.000 para Colombia (IDEAM, 2017) existen 91 tipos de Ecosistemas Generales de los cuales se encuentran en el municipio de Chía un total 11 ecosistemas generales:

- Agroecosistema de Cultivos Permanentes.
- Agroecosistema de Mosaico de Cultivos y Pastos.
- Agroecosistema Forestal.
- Agroecosistema ganadero
- Arbustal Andino Húmedo.
- Bosque Inundable Andino.
- Herbazal Andino húmedo.
- Río de Agua Blancas.
- Subxerófita Andina.
- Territorio Artificializado.
- Transicional Transformado.

Figura 65. Tipos de ecosistemas generales Chía

Fuente: IDEAM (2017)
1.2.2 Flora

La flora se puede definir como el conjunto de especies vegetales que se pueden encontrar en una región geográfica o área específica y que cuenta con características propias de un ecosistema determinado.

Se debe realizar una separación de las definiciones de flora y vegetación, Por cuanto la Vegetación consiste en los aspectos cuantitativos de arquitectura vegetal, y la flora se refiere al aspecto cualitativo.

Las plantas conforman la base de las cadenas tróficas que permiten la vida en muchos ecosistemas que constituyen el sustento de la sociedad, materializado en forma de beneficios o servicios ecosistémicos, que incluyen no solo la provisión de alimentos, materiales (por ejemplo las fibras y la madera) o medicinas, sino también la generación y conservación de los suelos (pues evita su degradación y erosión), el ser el hábitat para la fauna, el mejorar y aumentar la regulación hídrica que puede tener una cuenca haciendo disponible el agua para su uso, la purificación del agua, la regulación climática y también, los llamados servicios ecosistémicos de tipo cultural, que surgen cuando los ecosistemas son utilizados por una sociedad para la contemplación, la educación o como escenario de prácticas religiosas; todos estos servicios son fundamentales para el desenvolvimiento de la cultura.

Es necesario resaltar la existencia e importancia de los relictos de bosques de galería en las márgenes de los ríos Frío y Bogotá y de la vegetación de las áreas agropecuarias (vegetación no usada con fines agropecuarios), urbanas y suburbanas del municipio.

Según la SDMA (2017), varios estudios realizados sobre la vegetación de Chía, señalan que los bosques de Chía tienen un relativo buen grado de conservación (Fundación Ecosabana, 1997; Cl., 2015; Montañez, 2015), que aún mantienen su estructura (Montañez, 2015) y que a pesar de presentar diferentes fases de madurez tienden a la recuperación (Fundación Ecosabana, 1997; Montañez, 2015), pero que para permanecer en el tiempo o incluso para llegar a ser bosques maduros (incluidos los de galería), es necesario evitar las afectaciones antrópicas o naturales (Fundación Ecosabana, 1997; Montañez, 2015); sin embargo preocupa que especies como Symplocos theiformis, Prunus buxifolia, Prunus serotina, Macleania rupestris, Acacia melanoxylon, cf. Hesperomeles sp.1, Cordia sp y Croton bogotanus no presenten procesos regenerativos satisfactorios (Montañez, 2015). También resaltan la existencia e importancia de los relictos de bosques de galería en las márgenes de los ríos Frío y Bogotá y de la vegetación de las áreas agropecuarias (vegetación no usada con fines agropecuarios), urbanas y suburbanas del municipio.

En los bosques de los cerros orientales y occidentales han sido identificadas por los trabajos de Cl (2015) y Montañez (2015) 167 especies de plantas, 57 de porte arbóreo, 54 de porte arbustivo, 40 herbáceas, 7 epífitas y 9 enredaderas. Tomando como referencia el estudio de Montañez (2015) que analiza la diversidad de los bosques de ambos cerros, es posible establecer que aunque éstos contienen una gran riqueza específica, su biodiversidad es más bien baja, pues son dominados por pocas especies que hacen de estos bosques, ecosistemas uniformes.

De las especies de plantas identificadas solamente tres se encuentran clasificadas en alguna categoría de amenaza de extinción. El roble (Quercus humboldtii) ha sido catalogado como una especie vulnerable –VU por la Resolución 192 de 2014 del Ministerio de Ambiente y Desarrollo Sostenible; el cedro andino (Cedrela montana) es una especie casi amenazada –NT de acuerdo al libro rojo de plantas de Colombia y; según la Unión Internacional para la Conservación de la Naturaleza –UICN, el borrachero (Brugmansia arborea) es una especie extinta en estado silvestre, por lo que resulta perentorio establecer si los individuos registrados en los inventarios fueron cultivados por habitantes de la zona, o si por el contrario se establecieron y crecieron naturalmente.
lo que constituiría un caso de gran importancia al ser un único lugar donde esta especie aún persiste de manera natural en los bosques

En cuanto a la vegetación exótica en el municipio de Chía se ha introducido fundamentalmente para desarrollar plantaciones comerciales, aunque también con el propósito de adelantar procesos de reforestación protectora; asimismo, existen especies altamente invasivas que se han establecido en el municipio.

Aun cuando el área del municipio en la cual se han establecido estas especies introducidas es relativamente poca, esta vegetación trae consigo otras situaciones que pueden resultar problemáticas si no se atienden oportuna y adecuadamente, una de ellas tiene que ver con que es más vulnerable a los incendios forestales, lo que constituye un riesgo adicional para los bosques nativos contiguos e incluso, para la población que habita cerca. La mayoría de estos incendios son causados por el hombre y casi siempre de forma intencional (Mendoza, 2014).

Las recomendaciones en torno a la conservación de la flora de Chía deben buscar, por un lado, proteger los bosques y formaciones vegetales naturales que aún permanecen y por el otro, propender por el mejoramiento de la conectividad entre fragmentos. Estas estrategias deben ser trazadas primordialmente para la escala regional, pues se considera que en una etapa inicial su objetivo debe ser la recuperación de algunas de las principales funciones del ecosistema y no, su estructura y función primigenia (que requeriría estrategias puntuales) (Montañez, 2015).

Para asegurar la protección y conectividad de los bosques de Chía, es primordial aprovechar la figura de la Reserva Forestal Protectora Productora –RFPP “Cuenca alta del río Bogotá”, así como la implementación concreta de los usos del suelo que se definen en la zonificación del municipio y la estructura ecológica municipal, dónde áreas como las rondas de los ríos y quebradas, la Reserva Forestal Protectora y las zonas de amortiguación, serían determinantes para alcanzar este propósito. También es importante el manejo de especies invasoras como el retamo espinoso y la acacia (CI, 2015) y medidas como el enriquecimiento de bosques con especies nativas, la protección de fragmentos de bosque en rondas de ríos y quebradas para propender por su expansión e interconexión, así como el establecimiento de árboles y cercas vivas en potreros (Fundación Ecosabana, 1997; Montañez, 2015).

1.2.3 Fauna

La fauna silvestre se asocia principalmente a zonas con poca intervención humana o a lugares en los cuales existe una alta productividad biológica; en el municipio de Chía estos espacios se encuentran representados por los cerros orientales y occidentales y por los relictos de humedales de la ribera del río Bogotá, respectivamente.

Según la SDMA (2017), los inventarios más recientes de fauna realizados en Chía señalan la existencia de 161 especies (sin incluir insectos), de las cuales 130 corresponden a aves, 18 a mamíferos, 8 a anfibios y 5 a reptiles (Pérez, 2015).

Según Pérez, 2015, las especies de animales silvestres que se pueden encontrar en Chía son valiosas en sí mismas, hay algunas que son comunes, otras son raras, endémicas, amenazadas o migratorias, pero adicionalmente, al hacer parte de los ecosistemas y al desempeñar papeles específicos dentro de los mismos, son importantes pues brindan servicios ecosistémicos al municipio, tales como la polinización, la regulación de plagas y la dispersión de semillas, entre otros. Para permitir que estas especies continúen habitando en Chía y que incluso amplíen sus poblaciones, los estudios de fauna consultados recomiendan enfocar las estrategias de conservación en el mantenimiento, recuperación e integración de ecosistemas más que en el manejo de especies particulares.
Por lo anterior, Chía debe evitar la pérdida de los hábitats de la fauna silvestre que aún existen, es decir, debe conservar áreas estratégicas y no puede permitir la disminución de la superficie de áreas naturales (bosques, arbustales, áreas rupestres, etc.).

1.2.4 Áreas de Especial Interés Ambiental (AEIA)

1.2.4.1 Áreas protegidas

De acuerdo con las categorías de áreas protegidas del SINAP definidas en el Artículo 2.2.2.1.2.1 del Decreto 1076 de 2015, en el municipio de Chía se encuentra la Reserva Forestal Protectora Productora de la Cuenca Alta del Río Bogotá y la Reserva Natural de la Sociedad Civil “El Sauce”.

1.2.4.1.1 Reserva Forestal Protectora Productora de la Cuenca Alta del Río Bogotá

La reserva forestal protectora productora Cuenca Alta del río Bogotá se encuentra ubicada en las áreas montañosas que enmarcan la Sabana de Bogotá, localizada en la jurisdicción de las áreas rurales de 27 municipios de Cundinamarca incluyendo Bogotá D.C., desde el nacimiento del Río Bogotá hasta el Salto de Tequendama, con una extensión aproximada de 93,728 hectáreas, según la Resolución MADS No 138 de 2014 y demás actos administrativos que han modificado su límite.

Figura 66. RFPP de la Cuenca Alta del Río Bogotá en Chía

1.2.4.1.2 Reserva Natural de la Sociedad Civil El Sauce

El Ministerio de Ambiente y Desarrollo Sostenible registró un área de Reserva Natural de La Sociedad Civil en el Municipio de Chía, mediante la Resolución Número 098 del 13 de julio de 2018. En la Figura 67 se presenta la localización y zonificación establecida para la RNSC El Sauce.
De acuerdo con el artículo segundo de la Resolución 098 de 2018, como objetivos de conservación de la Reserva Natural de la Sociedad Civil "El Sauce" se proponen:

- Conservar una muestra del ecosistema de Bosque Andino, manteniendo el bosque nativo secundario existente en el predio, teniendo en cuenta las especies variadas existentes y las muestras importantes de flora y fauna de aves y mamíferos que se pueden avistar en el predio y sus alrededores.
- Conservar la oferta de bienes y servicios ambientales del área

Los usos y actividades se presentan en el artículo cuarto de la mencionada Resolución 098 de 2018, en el que se indica que La Reserva Natural de la Sociedad Civil "El Sauce" se destinará a cumplir los siguientes usos y actividades de acuerdo con lo dispuesto en artículo 2.2.2.1.17.3 del Decreto Único Reglamentario 1076 de 26 de mayo de 2015:

- Actividades que conduzcan a la conservación, preservación, regeneración y restauración de los ecosistemas entre las que se encuentran el aislamiento, la protección, el control y la revegetalización o enriquecimiento con especies nativas de la región.
- Acciones que conduzcan a la conservación, preservación y recuperación de poblaciones de fauna nativa.
- Educación ambiental.
- Investigación básica y aplicada.
- Formación y capacitación técnica y profesional en disciplinas relacionadas con el medio ambiente, la producción agropecuaria sostenible y el desarrollo regional.
- Producción o generación de bienes y servicios ambientales directos a la reserva e indirectos al área de influencia de esta.
- Construcción de tejido social, la extensión y la organización comunitaria.
- Habitación permanente.

Figura 67. RNSC El Sauce

Fuente: Resolución Número 098 del 13 de julio de 2018
1.2.4.2 Rondas declaradas

1.2.4.2.1 Río Bogotá

La CAR Cundinamarca mediante el Acuerdo 17 del 8 de julio de 2009 determinó la zona de protección del río Bogotá. La ronda, según el artículo primero del decreto en mención corresponde a la franja comprendida entre la línea de niveles promedios máximos de los últimos 15 años y una línea paralela a esta última, localizada a 30 metros, a lado y lado del cauce. En el artículo tercero del Acuerdo 17 de 2009 se define el régimen de usos de la zona de ronda de protección, correspondiente a los presentados en la Tabla 24.

Tabla 24. Régimen de usos ronda río Bogotá

<table>
<thead>
<tr>
<th>Usos Principales:</th>
<th>Usos Compatibles:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protección integral de los recursos naturales en general</td>
<td>Recreación Pasiva o contemplativa</td>
</tr>
<tr>
<td>Conservación de suelos</td>
<td>Rehabilitación ecológica</td>
</tr>
<tr>
<td>Restauración ecológica</td>
<td>Investigación Ecológica controlada</td>
</tr>
<tr>
<td>Forestal protector y siempre y cuando no se empleen especies vegetales que afecten el recurso hídrico</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usos Condicionados:</th>
<th>Usos Prohibidos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construcción de la infraestructura necesaria para el desarrollo de los usos principales y compatibles.</td>
<td>Agropecuario tradicional, mecanizado o industrial</td>
</tr>
<tr>
<td>Las acciones necesarias para el manejo hidráulico y para la prestación del servicio de acueducto, alcantarillado y saneamiento en general, con excepción de la disposición final de los residuos sólidos.</td>
<td>Forestal productor</td>
</tr>
<tr>
<td>Captación de aguas, o incorporación de vertimientos, de acuerdo con la normatividad vigente y aplicable.</td>
<td>Recreación activa</td>
</tr>
<tr>
<td>Construcción de infraestructura de apoyo para actividades de recreación, embarcaderos, puentes y obras de adecuación, desagües de instalaciones de acuicultura.</td>
<td>Minero e industrial de todo tipo</td>
</tr>
<tr>
<td></td>
<td>Extracción de materiales de construcción y/o material de río</td>
</tr>
<tr>
<td></td>
<td>Quema y tala de vegetación nativa</td>
</tr>
<tr>
<td></td>
<td>Rociería de todo tipo</td>
</tr>
</tbody>
</table>

Fuente: Acuerdo 17 del 8 de julio de 2009

1.2.4.2.2 Río Frío

Para el caso del río Frío, su ronda fue determinada por medio de la Resolución 2358 del 16 de octubre de 2014, por la CAR Cundinamarca, donde se indica que la ronda de protección corresponde a la franja comprendida entre la línea de niveles promedios máximos de los últimos 15 años y una línea paralela a esta última, localizada a 30 metros a lado y lado del cauce.

El objeto principal de la ronda de protección se define en el artículo 3 de la Resolución 2358 de 2014, correspondiente a la conservación, restauración y uso sostenible del recurso hídrico superficial y subterráneo, así como la protección del paisaje forestal y las coberturas naturales presentes en la zona.

El régimen de usos para el área de la ronda se presenta en la Tabla 25.

Tabla 25. Régimen de usos ronda río Frío

<table>
<thead>
<tr>
<th>Usos Principales:</th>
<th>Usos Compatibles:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservación de suelos y restauración de la vegetación adecuada para la protección de estos.</td>
<td>Recreación pasiva o contemplativa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usos Condicionados:</th>
<th>Usos Prohibidos:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captación de aguas o incorporación de vertimientos, siempre y cuando, no afecten el cuerpo de agua ni se realice sobre nacimientos y/o construcción de infraestructura de apoyo para actividades de recreación, embarcaderos, puentes y obras de adecuación, desagüe de Instalaciones de acuicultura y extracción del material de arrastre.</td>
<td>Usos agropecuarios, industriales, urbanos y suburbanos, loteo y construcción de viviendas, minería, disposición de residuos sólidos, tala y rocería de la vegetación.</td>
</tr>
</tbody>
</table>

Fuente: Resolución 2358 del 16 de octubre de 2014
1.2.4.3 Áreas determinadas en el POMCA del río Bogotá

Por medio de la Resolución 957 del 2 de abril de 2019, la CAR Cundinamarca, Corpograviu y Corporinoquia aprobaron el ajuste y actualización del Plan de Ordenación y Manejo de la Cuenca Hidrográfica del río Bogotá, dando cumplimiento a lo establecido en la orden 4.8 de la denominada Sentencia del río Bogotá. Así mismo, en la orden 4.18 de la sentencia del Consejo de Estado - Sala de lo Contencioso - Administrativo Sección Primera - Río Bogotá, Expediente No. 25000-23-27-000-2001-0479-01, se establece que el Distrito Capital y los demás entes territoriales aferentes a la Cuenca Hidrográfica del Río Bogotá en el término perentorio e improrrogable de 12 meses contados a partir de la aprobación y declaración de la modificación y actualización del POMCA del Río Bogotá por parte de la CAR, modifiquen y actualicen los POT, PBOT y EOT, ajustándolos con los contenidos del mismo, e incluyan en estos las variables ambientales, de cambio climático y la gestión de riesgos asociados a estos.

En este sentido, según el artículo 3 de la Resolución 957 de 2019, el municipio de Chía al formular, revisar y/o adoptar el POT, deberá ajustarse a lo definido por el POMCA como norma de superior jerarquía, con relación a la zonificación ambiental, el componente programático y el componente de gestión del riesgo.

En la zonificación determinada en el POMCA del río Bogotá, se establecen 2 categorías de ordenación, denominadas Categoría de conservación y protección ambiental y Categoría de uso múltiple.

La Categoría de conservación y protección ambiental incluye las áreas que deben ser objeto de especial protección ambiental de acuerdo con la legislación vigente y las que hacen parte de la estructura ecológica principal. A su vez, la Categoría de uso múltiple es aquella donde se realizará la producción sostenible. Dentro de esta categoría de uso múltiple se encuentran las zonas de uso y manejo denominadas restauración, áreas para la producción agrícola, ganadera y de uso sostenible de recursos naturales y las áreas urbanas (Minambiente, 2014). De acuerdo con lo anterior, en la Figura 68 y en la Tabla 26 se presenta la distribución de estas categorías en el municipio de Chía según lo establecido en el POMCA del río Bogotá.

![Figura 68. Zonificación POMCA para el municipio de Chía](image)

Fuente: Consorcio Huitaca (2017)
Tabla 26. Zonificación POMCA para el municipio de Chía

<table>
<thead>
<tr>
<th>Categoría de ordenación</th>
<th>Área aproximada (Ha)</th>
<th>% de área</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservación y protección ambiental</td>
<td>3176.0</td>
<td>39.5</td>
</tr>
<tr>
<td>Uso múltiple</td>
<td>4862.4</td>
<td>60.5</td>
</tr>
</tbody>
</table>

Fuente: Elaborado a partir de la zonificación POMCA (Consorcio Huitaca, 2017)

En relación con la categoría de uso múltiple, en el documento de Fase Prospectiva & Zonificación Ambiental del POMCA 2019 se establece que “Respecto a los usos permitidos en las áreas que se encuentran dentro de la categoría de uso múltiple y sus subcategorías, es el municipio quien definirá la clasificación del suelo y sus usos; dentro de los cuales se encuentran la explotación de recursos naturales y actividades análogas en cumplimiento a la normatividad actual vigente (verbigracia, minería, transformación de productos derivados, etc.), según lo establecido en el Decreto 3600 de 2007 compilado en el Decreto 1077 de 2015 reglamentario de la Ley 388 de 1997”.

En este sentido, el análisis detallado debe enfocarse a la categoría de Conservación y Protección Ambiental establecida en la zonificación del POMCA. Esta categoría se evaluó a nivel del descriptor, con el fin de identificar particularmente la zonificación establecida para el municipio de Chía. En la Figura 69 se puede observar el resultado final de la zonificación establecida por el POMCA para el municipio de Chía y en la Tabla 27 se evidencian las áreas designadas a cada categoría de ordenación.

Figura 69. Descriptores de la categoría Conservación y Protección Ambiental para Chía

Fuente: Consorcio Huitaca (2017)
Tabla 27. Descriptores de la categoría Conservación y Protección Ambiental para Chía

<table>
<thead>
<tr>
<th>CATEGORÍAS DE ORDENACIÓN</th>
<th>ZONAS DE USO Y MANEJO</th>
<th>SUBZONAS DE USO Y MANEJO</th>
<th>DESCRIPCIÓN</th>
<th>Área (Ha)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conservación y Protección Ambiental</td>
<td>Áreas de Protección</td>
<td>Áreas con reglamentación especial</td>
<td>Resguardo indígena -MUISCA DE FONQUETÁ Y CERCA DE PIEDRA</td>
<td>48,69</td>
<td>0,61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Áreas de Amenazas Naturales</td>
<td>AAN- Áreas de amenazas naturales (AAN)</td>
<td>558,22</td>
<td>6,96</td>
</tr>
<tr>
<td></td>
<td>Áreas de Importancia Ambiental</td>
<td>Otras AIA-Bosque Denso</td>
<td>35,45</td>
<td>0,44</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Áreas de Restauración ecológica</td>
<td>ARE-Cuerpos de Agua (CA)</td>
<td>35,36</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARE-Otras AIA-Bosque Denso</td>
<td>53,30</td>
<td>0,66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARE-Otras AIA-Lago El Dique</td>
<td>3,33</td>
<td>0,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARE-RFPP-Cuenca Alta del Río Bogotá</td>
<td>566,68</td>
<td>7,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARE-Ronda declarada-Río Bogotá</td>
<td>181,39</td>
<td>2,26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ARE-Ronda declarada-Río Frío (bajo)</td>
<td>100,15</td>
<td>1,25</td>
</tr>
<tr>
<td></td>
<td>Áreas Protegidas</td>
<td>Áreas SINAP</td>
<td>RFPP-Cuenca alta del Río Bogotá</td>
<td>864,75</td>
<td>10,78</td>
</tr>
</tbody>
</table>

Fuente: Consorcio Huitaca (2017)

Otras Áreas de Especial Interés Ambiental (AEIA) dentro del municipio, corresponden a los humedales como Ecosistemas sensibles y estratégicos, según lo descrito en el numeral 1.1.4.3.2 del presente documento, así como las zonas de recarga de acuíferos descritas en la Figura 41.
BIBLIOGRAFÍA

CAR. (2015). Realizar la delimitación, caracterización biofísica y descripción del componente social de 100 humedales identificados y priorizados en la jurisdicción de la CAR. Bogotá.
CORTOLIMA. (s.f.). Plan de Ordenación y Manejo Ambiental de la microcuenca de las quebradas Las Panelas y La Balsa.
IGAC. (Octubre de 2012). Estudio de los conflictos de uso del territorio colombiano. Obtenido de Agrosavia: https://repository.agrosavia.co/handle/20.500.12324/12723